Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Researchers and practitioners are typically familiar with descriptive statistics and statistical inference. However, outside of regression techniques, little attention may be given to questions around prediction. In the current paper, we introduce prediction intervals using fundamental concepts that are learned in descriptive and inferential statistical training ( sampling error, standard deviation). We walk through an example using simple hand calculations and reference a simple R package that can be used to calculate prediction intervals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334197 | PMC |
http://dx.doi.org/10.11613/BM.2024.030101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!