Numerous manually excavated loess caves are present within a cultural relic protection zone in the northwestern region of China. The collapse of these caves frequently leads to the cracking, tilting, and even collapse of ancient buildings above, posing a severe threat to the safety of cultural architectural relics. Investigating the stability and characteristics of deformation and failure in loess caves is essential for effectively reinforcing and protecting cultural relics. A two-dimensional model of a loess underground cavern was developed using OptumG2. The stability and modes of deformation and failure in the underground cavern were analyzed through the augmentation of soil gravity and the strength reduction method. This analysis determined the cavern's safety factor, force, deformation and damage mode, and the plastic zone's progression. Numerical simulations analyzed the force characteristics of the support structure under different stress release ratios. The findings revealed that, with the implementation of an anchor rod concrete lining support scheme, the most probable failure mode is a shear failure, initiating at the arch foot. The ground's stress release rate does not influence the safety factor of the cavern but rather the material, design, and strength of the support structure. However, the magnitude of the internal forces acting on the supporting structure by the soil in the cavern is related to the degree of ground stress release. When applied during significant stress release, support structures may experience reduced internal forces, albeit with more substantial stratum displacement; opting for an appropriate stress release when applying support structures is crucial for achieving optimal stratum displacement and lining internal forces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336460PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e35163DOI Listing

Publication Analysis

Top Keywords

stress release
20
loess caves
12
internal forces
12
deformation failure
8
underground cavern
8
safety factor
8
support structure
8
support structures
8
stratum displacement
8
support
6

Similar Publications

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

Experiences of patients who retest positive for SARS-CoV-2 Omicron variant after discharge: a qualitative study.

J Infect Dev Ctries

December 2024

The Cancer Hospital Affiliated to Shandong First Medical University (Shandong Cancer Prevention Research Institute, Shandong Cancer Hospital), Jinan 250117, China.

Introduction: In this study, we analyzed the psychological aspects of coronavirus disease 2019 (COVID-19) patients who were discharged from the hospitals in Shanghai, China, and later had positive nucleic acid retest results for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant infection (re-positive COVID-19). The purpose was to gain clarity on the patients' needs and to provide evidence for the medical staff to deliver scientific and targeted health care to the patients.

Methodology: We screened patients who tested positive for SARS-CoV-2 Omicron variant infection by nucleic acid testing after having previously recovered from a COVID-19 infection and being discharged from Shanghai shelter hospitals or COVID-19-designated hospitals from April 3, 2022, to May 10, 2022.

View Article and Find Full Text PDF

Cell-free DNA release following psychosocial and physical stress in women and men.

Transl Psychiatry

January 2025

Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany.

Cell-free DNA (cfDNA) is continuously shed by all cells in the body, but the regulation of this process and its physiological functions are still largely unknown. Previous research has demonstrated that both nuclear (cf-nDNA) and mitochondrial (cf-mtDNA) cfDNA levels increase in plasma in response to acute psychosocial and physical stress in males. This study further investigated these findings by testing 31 female participants (16 using oral hormonal contraception and 15 not using oral hormonal contraception), and the results were subsequently compared with those of 16 male participants.

View Article and Find Full Text PDF

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

Plants deploy cellular Ca2+ elevation as a signal for environmental stress signaling. Extracellular ATP (eATP) is released into the extracellular matrix when cells are wounded. DOES NOT RESPOND TO NUCLEOTIDES 1 (DORN1), a key legume-type lectin receptor, senses and binds eATP and activates Ca2+ signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!