Antimicrobial resistance (AMR) is a growing and concerning threat to global public health, necessitating innovative strategies to combat this crisis. Amidine-containing compounds have emerged as promising agents in the battle against AMR. This review gives a summary of recent advances from the past decade in studies of antimicrobial amidine-containing compounds with the aim to feature their structural diversity and the pharmacological relevance of the moiety to antimicrobial activity and their potential use in combating antimicrobial resistance, to the greatest extent possible. Highlighting is put on chemical structure of such compounds in relation to antimicrobial activities such as antibacterial, antifungal, and antiparasitic activities. Researchers commonly modify molecules containing amidine or incorporate amidine into existing antimicrobial agents to enhance their pharmacological attributes and combat antimicrobial resistance. This comprehensive review consolidates the current knowledge on amidine-containing compounds, elucidating their antimicrobial mechanisms and highlighting their promise in addressing the global AMR crisis. By offering a multidisciplinary perspective, we aim to inspire further research and innovation in this critical area of antimicrobial research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336351 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e32010 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Hannover Medical School, Institute of Pharmacology, D-30625, Hannover, Germany.
The increasing supply shortages of antibacterial drugs presents significant challenges to public health in Germany. This study aims to predict the future consumption of the ten most prescribed antibacterial drugs in Germany up to 2040 using ARIMA (Auto Regressive Integrated Moving Average) models, based on historical prescription data. This analysis also evaluates the plausibility of the forecasts.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, P.O. Box 9086, Addis Ababa, Ethiopia.
Bacterial infections commonly complicate cutaneous leishmaniasis (CL), worsening the disease and delaying healing. Despite this, there is a gap in research concerning the characteristics of pathogenic microorganisms associated in CL patients. This study aims to identify bacterial isolates and drug susceptibility patterns in CL patients.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Background: In clinical practice, the emergence of ST11-K64 carbapenem-resistant Klebsiella pneumoniae (ST11-K64 CRKP) has become increasingly alarming. Despite this trend, limited research has been conducted to elucidate the clinical and molecular characteristics of these strains.
Objectives: This study aimed to comprehensively investigate the clinical characteristics, antimicrobial resistance patterns, resistance and virulence-associated genes, and molecular epidemiology of ST11-K64 CRKP in Southwest China.
Probiotics Antimicrob Proteins
January 2025
Faculty of Biotechnologies (BioTech), ITMO University, 9 Lomonosova Street, 191002, Saint Petersburg, Russia.
Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
Soil is one of the most important reservoirs of antibiotic resistance, global threat that needs to be addressed with the One Health approach. Despite urban parks playing a fundamental role in urban ecosystems, the diffusion, maintenance, and human impact of antibiotic-resistance genes in this substrate are still poorly addressed. To fill in this gap, we adopted a molecular and culturomics approach to study antibiotic resistance in urban parks, accounting for the environmental matrix and the level of urbanization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!