The use of solar greenhouses in China is increasing because they permit environmental conditions to be controlled. Studies of the heat transfer processes in the leaves of plants cultivated within solar greenhouses are needed. Here, we studied heat transfer processes in 'Shine Muscat' grapevine leaves under moderate deficit irrigation (MDI), severe deficit irrigation (SDI), and full irrigation (FI) treatments under varying weather conditions. The stomatal conductance, leaf temperature, and transpiration rate of both shade and sun grapevine leaves were measured, and the effects of ambient temperature and relative humidity on these variables were determined. A thermal physics model of the leaves was established to explore the heat dissipation process. On sunny days, the transpiration heat transfer of sun leaves in the MDI, SDI, and FI treatments was 2.62 MJ m·day, 2.44 MJ m·day, and 3.86 MJ m·dayand 0.818 MJ m·day, 0.782 MJ m·day, and 1.185 MJ m·day on rainy days, respectively. There was a significant difference in transpiration heat transfer under fully irrigated and deficit irrigation conditions under different weather conditions. Furthermore, transpiration heat transfer accounted for 41.49 % and 25.03 % of the total heat transfer of sun leaves in the FI treatment and 33.94 % and 29.43 % of the total heat transfer of shade leaves on rainy days, respectively, indicating that relative humidity plays a key role in determining transpiration heat transfer and leaf temperature and that its effect was greater on sun leaves than on shade leaves.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336416 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e35105 | DOI Listing |
Heliyon
January 2025
Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: The development of heat transfer devices used for heat conversion and recovery in several industrial and residential applications has long focused on improving heat transfer between two parallel plates. Numerous articles have examined the relevance of enhancing thermal performance for the system's performance and economics. Heat transport is improved by increasing the Reynolds number as the turbulent effects grow.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Food Science and Technology, Faculty of Agriculture Urmia University Urmia Iran.
Steam injection, especially in a superheated state, increases the rate of heat transfer and improves the quality of the baked products. In this research, different baking methods (forced convention, superheated steam, and superheated steam-assisted) at different temperatures (140°C, 160°C, 180°C) were applied to produce a new formulated rice cake containing acorn flour and inulin. The findings revealed that the level of moisture inside the oven directly influences the volume of the cake.
View Article and Find Full Text PDFLab Chip
January 2025
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
In regular biosample cryopreservation operations, dropwise pipetting and continuous swirling are ordinarily needed to prevent cell damage ( sudden osmotic change, toxicity and dissolution heat) caused by the high-concentration cryoprotectant (CPA) addition process. The following CPA removal process after freezing and rewarming also requires multiple sample transfer processes and manual work. In order to optimize the cryopreservation process, especially for trace sample preservation, here we present a microfluidic approach integrating CPA addition, sample storage, CPA removal and sample resuspension processes on a 30 × 30 × 4 mm three-layer chip.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Department of Production Engineering and Mechanical Design, Faculty of Engineering, Tanta University 31527, Egypt; Faculty of Engineering, Pharos University in Alexandria 21648, Alexandria, Egypt.
This review examines the potential for utilizing nuclear power plant (NPP) waste heat in hybrid desalination systems, focusing on Reverse Osmosis-Low-Temperature Evaporation (RO-LTE) driven by renewable energy sources and atomic waste heat. By employing a SOAR (Strengths, Opportunities, Aspirations, Results) analysis, the study evaluates the integration of NPP waste heat into various desalination technologies, emphasizing the environmental benefits and energy efficiency improvements. Fundamental aspirations include advancements in material science and heat exchanger designs, which enhance heat transfer and evaporation processes.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Materials Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia.
Today, composite profiles of constant cross section are widely used in advanced engineering structures. The use of composite profiles in window and door structures can reduce thermal bridging and reduce energy consumption for heating and cooling. This article focuses on the production of new, thermoplastic-based structural pultruded profiles and their application in a PVC (polyvinylchloride) window structure as a reinforcement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!