With regards to the global continuous growth in consumption of base metals such as antimony (Sb), mining companies are currently looking to improve the productivity and extraction of Sb from low grade ore in order to economically process it. With this aim, in this study, an efficient protocol was developed to recover metallic Sb from the low grade FeSiO(OH). SbO(OH). SbO ore of the Sefid-Abe mine in Zahedan province, Iran, utilizing selective acidic or alkaline leaching followed by Sb electrowinning. A process was developed to recover antimony from an SbO ore source, using selective acidic or alkaline leaching followed by antimony electrowinning. Sb could be leached with an efficiency of 85 % using 5 M NaOH and 87 % using 5 M hydrochloric acid/5 M sulfuric acid as the digestion solution at 80 °C for 8 h. The electrowinning process plays a significant role in recovery of highly pure Sb metal. Relying on this approach, a high deposition rate and current efficiency have been generated at a deposition potential 2 V at 30 °C (80 °C for alkaline medium). This was achieved by using anode electrode made of graphite and cathode electrode made of steel (two steel electrodes were used for alkaline electrowinning). Additionally, for acidic electrowinning, exploitation of Sb from the electrolyte solution was achieved by applying a current of 0.1 A, resulting in the highest yield equal to 89 %. On the other hand, for alkaline electrowinning, the highest efficiency corresponds to the current intensity of 0.5 A, which resulted in 97 % Sb extraction from the electrolyte solution. The XRD and ICP analysis performed for samples obtained from the electrolysis confirmed that the resulting antimony ingot has an exceptionally high purity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336581PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e35300DOI Listing

Publication Analysis

Top Keywords

acidic alkaline
12
alkaline leaching
12
electrowinning process
12
low grade
8
developed recover
8
sbo ore
8
selective acidic
8
alkaline electrowinning
8
electrolyte solution
8
electrowinning
7

Similar Publications

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.

View Article and Find Full Text PDF

Function of Nodulation-Associated GmNARK Kinase in Soybean Alkali Tolerance.

Int J Mol Sci

January 2025

Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China.

Soybean () is a vital crop that is rich in high-quality protein and edible oil for human nutrition and agriculture. Saline-alkali stress, a severe environmental challenge, significantly limits soybean productivity. In this study, we found that the nodule receptor kinase GmNARK enhances soybean tolerance to alkali stress besides nodulation.

View Article and Find Full Text PDF

Exploring the Biological Impact of β-TCP Surface Polarization on Osteoblast and Osteoclast Activity.

Int J Mol Sci

December 2024

Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan.

β-tricalcium phosphate (β-TCP) is a widely utilized resorbable bone graft material, whose surface charge can be modified by electrical polarization. However, the specific effects of such a charge modification on osteoblast and osteoclast functions remain insufficiently studied. In this work, electrically polarized β-TCP with a high surface charge density was synthesized and evaluated in vitro in terms of its physicochemical properties and biological activity.

View Article and Find Full Text PDF

Fluorescent Polymers via Coordination of -Terpyridine Ligands with Transition Metals and Their pH Response Properties.

Polymers (Basel)

December 2024

Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

Stimulus-responsive luminescent materials are pivotal in the field of sensing. Fluorescent transition metal complexes with a charge transfer excited state, especially terpyridine-coordinated polymers, are of particular interest due to their tunable emission. In this paper, a novel bis-terpyridine ligand was synthesized and assembled into a coordination polymer, which showed intense visible light absorption and fluorescence emission in the solid state that could be regulated by an acidic or basic pH.

View Article and Find Full Text PDF

This study aimed to evaluate the oxidative stability and surface properties of cold-pressed vegetable oils using the Langmuir monolayer technique. Six oils-milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, and pumpkin seed-were analyzed to investigate their molecular organization and behavior at the air/water interface, particularly after undergoing oxidation. The results showed that oils rich in polyunsaturated fatty acids (PUFAs), such as flaxseed and evening primrose oils, formed monolayers with larger molecular areas and lower stability, which led to faster oxidative degradation, especially under thermal conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!