We have inserted the 509-bp-long fragment of sea urchin P. miliaris histone gene spacer region into plasmid pUC19. The fragment contains the 60-bp-long homopurine-homopyrimidine tract that is known to be hypersensitive to the S1 endonuclease. Using two-dimensional gel electrophoresis we have observed a sharp structural transition in the insert with increasing DNA superhelicity. As in the cases of cruciform and Z form formation, the observed transition partly relaxes the superhelical stress. In contrast with the other two well documented transitions, the observed transition strongly depends on pH. At pH7 and above the transition occurs at negative superhelicities exceeding the physiological range (- sigma greater than 0.08). For pH6 the transition occurs at -sigma = 0.055, whereas for pH4.3 it takes place at -sigma = 0.001. A comprehensive analysis of the obtained data has made it possible to define the nature of the observed transition. We conclude that under superhelical stress or/and at low pH homopurinehomopyrimidine tracts adopt a novel spatial structure called the H form.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.1985.10508420 | DOI Listing |
Adv Mater
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures.
View Article and Find Full Text PDFHistopathology
January 2025
Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
Aims: Classification and risk stratification of endometrial carcinoma (EC) has transitioned from histopathological features to molecular classification, e.g. the ProMisE classifier, identifying four prognostic subtypes: POLE mutant (POLEmut) with almost no recurrence or disease-specific death events, mismatch repair deficient (MMRd) and no specific molecular profile (NSMP), with intermediate outcome and p53 abnormal (p53abn) with poor outcomes.
View Article and Find Full Text PDFNanotechnol Sci Appl
January 2025
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.
Purpose: Improving drug solubility is crucial in formulating poorly water-soluble drugs, especially for oral administration. The incorporation of drugs into mesoporous silica nanoparticles (MSN) is widely used in the pharmaceutical industry to improve physical stability and solubility. Therefore, this study aimed to elucidate the mechanism of poorly water-soluble drugs within MSN, as well as evaluate the impact on the dissolution and physical stability.
View Article and Find Full Text PDFChronic Stress (Thousand Oaks)
January 2025
Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands.
Background: Trauma-focused psychotherapy is treatment of choice for post-traumatic stress disorder (PTSD). However, about half of patients do not respond. Recently, there is increased interest in brain criticality, which assesses the phase transition between order and disorder in brain activity.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstraße 8, 12489 Berlin, Germany.
MXenes are two-dimensional (2D) materials with versatile applications in optoelectronics, batteries, and catalysis. To unlock their full potential, it is crucial to characterize MXene interfaces and intercalated species in more detail than is currently possible with conventional optical spectroscopies. Here, we combine ultra-broadband ellipsometry and transmission spectroscopy from the mid-infrared (IR) to the deep-ultraviolet (UV) to probe quantitatively the composition, structure, transport, and optical properties of spray-coated TiCT MXene thin films with varying material properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!