Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Many autologous melanocytes are required for surgical treatment of depigmentation diseases such as vitiligo. However, primary cultured melanocytes have a limited number of in vitro passages. The production of functional epidermal melanocytes from stem cells provides an unprecedented source of cell therapy for vitiligo. This study explores the clinical application of melanocytes induced by hair follicle neural crest stem cells (HFNCSCs). This study established an in vitro differentiation model of HFNCSCs into melanocytes. Results demonstrate that most differentiated melanocytes expressed the proteins C-KIT, MITF, S-100B, TYRP1, TYRP2, and tyrosinase. The HFNCSC-derived melanocytes were successfully transplanted onto the dorsal skin of mice and survived in the local tissues, expressing marker protein of melanocytes. In conclusion, HFNCSCs in mice can be induced to differentiate into melanocytes under specific conditions. These induced melanocytes exhibit the potential to facilitate repigmentation in the lesion areas of vitiligo-affected mice, suggesting a promising avenue for therapeutic intervention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336637 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e35295 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!