A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Research on high-speed digital optical signal jitter measurement technology based on clock recovery algorithm using eye diagram opening area. | LitMetric

With the rapid development of information technology, high-speed digital optical signal transmission technology has become the core of modern communication networks. However, the increase in transmission rates brings challenges such as noise, distortion, and interference, which affect the accuracy of clock recovery. To address these issues, this study proposes a clock recovery algorithm based on the eye diagram opening area to improve the accuracy and efficiency of high-speed digital optical signal jitter measurement. The proposed method extracts clock information from the signal using the opening area and curvature characteristics of the eye diagram for jitter measurement. Experimental results demonstrate that the clock recovery algorithm based on the eye diagram opening area can stably reconstruct the signal eye diagram and obtain jitter parameters under different optical power conditions. At optical powers of -7.2 dBm, -12.2 dBm, and -17.2 dBm, the Q-factors were 8.8, 7.6, and 4.3, respectively, and the RMS jitter values were 12.2 ps, 13.4 ps, and 21.2 ps, respectively. At optical powers of -2.3 dBm, 0.1 dBm, 2.4 dBm, 4.6 dBm, and 6.0 dBm, the Q-factors were 9.1, 9.3, 9.5, 9.7, and 10.0, respectively, and the average jitter values were 8.9 ps, 8.5 ps, 8.0 ps, 7.5 ps, and 7.0 ps. These results indicate that the proposed algorithm performs excellently under low optical power conditions and maintains high recovery accuracy even when jitter increases at higher optical powers. The clock recovery algorithm based on the eye diagram opening area significantly improves the accuracy and stability of high-speed digital optical signal jitter measurement, enriches the theoretical research of clock recovery algorithms, and shows significant advantages in improving signal transmission quality, reducing bit error rate, and enhancing communication link reliability. The research outcomes provide key technical support for the optimization of modern high-speed optical communication systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337039PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e35756DOI Listing

Publication Analysis

Top Keywords

clock recovery
24
eye diagram
24
opening area
20
high-speed digital
16
digital optical
16
optical signal
16
jitter measurement
16
recovery algorithm
16
diagram opening
16
dbm dbm
16

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!