Next generation electrical grid considered as Smart Grid has completely embarked a journey in the present electricity era. This creates a dominant need of machine learning approaches for security aspects at the larger scale for the electrical grid. The need of connectivity and complete communication in the system uses a large amount of data where the involvement of machine learning models with proper frameworks are required. This massive amount of data can be handled by various process of machine learning models by selecting appropriate set of consumers to respond in accordance with demand response modelling, learning the different attributes of the consumers, dynamic pricing schemes, various load forecasting and also data acquisition process with more cost effectiveness. In connected to this process, considering complex smart grid security and privacy based methods becomes a major aspect and there can be potential cyber threats for the consumers and also utility data. The security concerns related to machine learning model exhibits a key factor based on different machine learning algorithms used and needed for the energy application at a future perspective. This work exhibits as a detailed analysis with machine learning models which are considered as cyber physical system model with smart grid. This work also gives a clear understanding towards the potential advantages, limitations of the algorithms in a security aspect and outlines future direction in this very important area and fast-growing approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336848 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e35683 | DOI Listing |
JMIR Nurs
January 2025
Department of Healthcare Epidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan.
This research letter discusses the impact of different file formats on ChatGPT-4's performance on the Japanese National Nursing Examination, highlighting the need for standardized reporting protocols to enhance the integration of artificial intelligence in nursing education and practice.
View Article and Find Full Text PDFJMIR Hum Factors
January 2025
Department of Value Improvement, St. Antonius Hospital, Nieuwegein, Netherlands.
Background: Patients with cerebrovascular accident (CVA) should be involved in setting their rehabilitation goals. A personalized prediction of CVA outcomes would allow care professionals to better inform patients and informal caregivers. Several accurate prediction models have been created, but acceptance and proper implementation of the models are prerequisites for model adoption.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Psychology, The University of Texas at San Antonio, San Antonio, TX, United States.
Background: Perception-related errors comprise most diagnostic mistakes in radiology. To mitigate this problem, radiologists use personalized and high-dimensional visual search strategies, otherwise known as search patterns. Qualitative descriptions of these search patterns, which involve the physician verbalizing or annotating the order he or she analyzes the image, can be unreliable due to discrepancies in what is reported versus the actual visual patterns.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
JMIR Publications, Toronto, ON, Canada.
J Med Internet Res
January 2025
Univ Rennes, CHU Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.
Background: To reduce the mortality related to bladder cancer, efforts need to be concentrated on early detection of the disease for more effective therapeutic intervention. Strong risk factors (eg, smoking status, age, professional exposure) have been identified, and some diagnostic tools (eg, by way of cystoscopy) have been proposed. However, to date, no fully satisfactory (noninvasive, inexpensive, high-performance) solution for widespread deployment has been proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!