Since the largest and most fatal Ebola virus epidemic during 2014-2016, there have been several consecutive filoviral outbreaks in recent years, including those in 2021, 2022, and 2023. Ongoing outbreak prevalence and limited FDA-approved filoviral therapeutics emphasize the need for novel small molecule treatments. Here, we showcase the structure-activity relationship development of N-substituted pyrrole-based heterocycles and their potent, submicromolar entry inhibition against diverse filoviruses in a target-based pseudovirus assay. Inhibitor antiviral activity was validated using replication-competent Ebola, Sudan, and Marburg viruses. Mutational analysis was used to map the targeted region within the Ebola virus glycoprotein. Antiviral counter-screen and phospholipidosis assays were performed to demonstrate the reduced off-target activity of these filoviral entry inhibitors. Favorable antiviral potency, selectivity, and drug-like properties of the N-substituted pyrrole-based heterocycles support their potential as broad-spectrum antifiloviral treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.4c00527 | DOI Listing |
J Med Chem
August 2024
Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States.
Since the largest and most fatal Ebola virus epidemic during 2014-2016, there have been several consecutive filoviral outbreaks in recent years, including those in 2021, 2022, and 2023. Ongoing outbreak prevalence and limited FDA-approved filoviral therapeutics emphasize the need for novel small molecule treatments. Here, we showcase the structure-activity relationship development of N-substituted pyrrole-based heterocycles and their potent, submicromolar entry inhibition against diverse filoviruses in a target-based pseudovirus assay.
View Article and Find Full Text PDFJ Agric Food Chem
December 2017
Department of Food Analysis and Nutrition, Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic.
Structures and formation pathways of compounds responsible for blue-green discoloration of processed garlic were studied in model systems. A procedure was developed for isolation of the color compounds and their tentative identification by high-performance liquid chromatography coupled to a diode array detector and tandem mass spectrometry. It was found that the pigment is a mixture of numerous pyrrole-based purple/blue and yellow species.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2017
Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.
Pyrrole was covalently bonded to 1-methyl and 1-benzylimidazolium ionic liquids (ILs) via an N-substituted alkyl linkage to prepare electropolymerizable IL monomers with excellent thermal stability. The methylimidazolium IL, [pyrrole-CMIm], was then electropolymerized on macro- and microelectrode materials to form conductive polymeric IL (CPIL)-modified surfaces. Electrochemical characterization of a 1.
View Article and Find Full Text PDFMed Chem
May 2016
Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece..
Undoubtedly, efficient cancer treatment has been a significant challenge for the scientific community over the last decades. Despite tremendous progress made towards this direction, there are still efforts needed to discover new anticancer drugs. In this work, a series of N-substituted pyrrolebased scaffolds have been synthesized and evaluated for antiproliferative activity against a panel of cancer cell lines (L1210, CEM and HeLa).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!