A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Positional Information-Based Organization of Surfactant Droplet Swarms Emerging from Competition Between Local and Global Marangoni Effects. | LitMetric

Positional information is key for particles to adapt their behavior based on their position in external concentration gradients, and thereby self-organize into complex patterns. Here, position-dependent behavior of floating surfactant droplets that self-organize in a pH gradient is demonstrated, using the Marangoni effect to translate gradients of surface-active molecules into motion. First, fields of surfactant microliter-droplets are generated, in which droplets floating on water drive local, outbound Marangoni flows upon dissolution of surfactant and concomitantly grow myelin filaments. Next, a competing surfactant based on a hydrolysable amide is introduced, which is more surface active than the myelin surfactant and thereby inhibits the local Marangoni flows and myelin growth from the droplets. Upon introducing a pH gradient, the amide surfactant hydrolyses in the acidic region, so that the local Marangoni flows and myelin growth are reestablished. The resulting combination of local and global surface tension gradients produces a region of myelin-growing droplets and a region where myelin growth is suppressed, separated by a wave front of closely packed droplets, of which the position can be controlled by the pH gradient. Thereby, it is shown how "French flag"-patterns, in synthetic settings typically emerging from reaction-diffusion systems, can also be established via surfactant droplet systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579963PMC
http://dx.doi.org/10.1002/smll.202403720DOI Listing

Publication Analysis

Top Keywords

marangoni flows
12
myelin growth
12
surfactant droplet
8
local global
8
local marangoni
8
flows myelin
8
surfactant
7
local
5
marangoni
5
droplets
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!