The structural distortion of a single- and a double-stranded decadeoxynucleotide upon binding of cis-PtCl2(NH3)2 was studied by 1H-NMR. After selective platination of d(T-C-T-C-G-G-T-C-T-C) (I) at the central d(-GpG-) site (resulting in I-Pt), several non-exchangeable base protons as well as H1', H2', H2" and H3' protons could be assigned by means of conventional NMR double-resonance techniques. Addition of the complementary decamer strand to I and I-Pt yielded the double-stranded III and III-Pt, respectively. All non-exchangeable base, H1', and most of the H2' and H2" protons in the two double stranded compounds could be assigned using 2D-chemical shift correlation (COSY) and nuclear Overhauser enhancement (NOESY) techniques. The double stranded compound III appears to adopt a B-DNA like structure. Comparison of NOEs and proton-proton coupling constants in the d(-GpG-).cisPt part in I-Pt and III-Pt reveals that their structure displays large similarity. Significant chemical shift changes (i.e. larger than 0.1 ppm) between III and III-Pt are restricted to the central four base pairs. It follows that the outer three base pairs, located on either side of the central four base pairs in III-Pt are likely to adopt a regular B-DNA type helix. The observed large upfield and downfield chemical shifts in the d(-CpGpG-) part of III with respect to III-Pt can be rationalized by describing the distortion of the double helix as a kink. A discussion of the observed physical effects upon platination of a double-stranded oligonucleotide is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.1985.10507629DOI Listing

Publication Analysis

Top Keywords

double stranded
12
base pairs
12
non-exchangeable base
8
h1' h2'
8
h2' h2"
8
iii iii-pt
8
central base
8
base
5
iii-pt
5
cis-diamminedichloroplatinumii induced
4

Similar Publications

Protocol for identifying Dicer as dsRNA binding and cleaving reagent in response to transfected dsRNA.

STAR Protoc

January 2025

CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. Electronic address:

Mammalian Dicer has been proved to be functional on double-stranded RNAs (dsRNAs) and involved in antiviral immunity or immune regulation. Here, we present a protocol for identifying Dicer as a dsRNA binding and cleaving factor to transfected dsRNA in cell lines, based on small RNA sequencing (RNA-seq) and dsRNA-immunoprecipitation (dsRNA-IP). We detail both experimental processes and analysis on small RNA-seq data.

View Article and Find Full Text PDF

The exogenous application of RNAi technology offers new promises for crops improvement. Cell-based or synthetically produced strands are economical, non-transgenic and could induce the same responses. The substantial population growth demands novel strategies to produce crops without further damaging the environment.

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.

View Article and Find Full Text PDF

Emerging Roles of TRIM56 in Antiviral Innate Immunity.

Viruses

January 2025

Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!