Carbon dioxide removal (CDR) technologies and international emissions trading are both widely represented in climate change mitigation scenarios, but the interplay among them has not been closely examined. By systematically varying key policy and technology assumptions in a global energy-economic model, we find that CDR and international emissions trading are mutually reinforcing in deep decarbonization scenarios. This occurs because CDR potential is not evenly distributed geographically, allowing trade to unlock this potential, and because trading in a net-zero emissions world requires negative emissions, allowing CDR to enable trade. Since carbon prices change in the opposite direction as the quantity of permits traded and CDR deployed, we find that the total amount spent on emissions trading and the revenue received by CDR producers do not vary strongly with constraints on emissions trading or CDR. However, spending is more efficient and GDP is higher when both CDR and trading are available.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339383 | PMC |
http://dx.doi.org/10.1038/s41467-024-49502-8 | DOI Listing |
J Environ Manage
January 2025
Faculty of Arts and Society, Charles Darwin University, Darwin, Australia. Electronic address:
This is a comparative study that investigates the role of green growth, green technological innovations, agricultural eco-efficiency and trade openness on carbon neutrality in the top three carbon emitting countries, namely, China, the USA and India, using panel quantile regression with quarterly data for the time period of 2010-2022. The results reveal different findings which have important policy implications. Firstly, carbon emissions vs green growth and carbon emissions vs green technological innovation have a significant U-shaped relationship, which indicate that when green growth and green technological innovations increases, the rate of carbon emissions continues to decline up to a threshold point and start to increase thereafter.
View Article and Find Full Text PDFThis study investigates the effects of varying exhaust gas recirculation (EGR) rates and temperatures on the combustion and emissions characteristics of a compression ignition engine fueled with hydrotreated vegetable oil (HVO). Understanding these effects is essential for optimizing renewable fuel applications in compression ignition engines, contributing to cleaner combustion, and supporting sustainable transportation initiatives. The experiments revealed that increasing the EGR rate to 20% not only reduces NOx emissions by approximately 25% but also increases smoke by around 15%, highlighting a trade-off between NOx and particulate matter control.
View Article and Find Full Text PDFWater Res
January 2025
School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4067, Australia.
Urban water utilities are significant energy users and also key actors in decarbonisation. However, the integrated perspective of urban water supply and wastewater system emissions, the relevant driving forces, and the boundaries of inclusions or exclusions, are rarely discussed. This is due to widely disaggregated data, and complex issues regarding the boundary of the system being investigated.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China. Electronic address:
Plastic waste's dual characteristics of "resource" and "pollution" led to the prevalence of trade. The Global Plastic Waste Trade Network (GPWTN) is heterogeneous, and its structure is susceptible to the influence of key countries within it. However, there is a shortage of research on the key countries and trade drivers influencing GPWTN evolution.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Institute of Blue and Green Development, Shandong University, Weihai, 264209, China; Faculty of Finance, City University of Macau, Macao, China. Electronic address:
Owing to critical policy significance, a growing body of literature has been predominantly concentrating on the social welfare benefits brought by green finance (GF) initiatives. However, there is a paucity of research that quantifies the economic costs of GF initiatives on carbon reduction, raising the increasing concerns about the irreconcilable climate-economy trade-offs. To end this, the present study systematically investigates the influence of GF initiatives on the carbon-related marginal abatement cost (MAC) using two competing hypotheses: regulatory versus technical effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!