Fatty acid amide hydrolase (FAAH) serves as the primary enzyme responsible for degrading the endocannabinoid anandamide (AEA). Inhibition of FAAH, either through pharmacological means or genetic manipulation, can effectively reduce inflammation in various organs, including the brain, colon, heart, and kidneys. Infusion of a FAAH inhibitor into the kidney medulla has been shown to induce diuretic and natriuretic effects. FAAH knockout mice have shown protection against both post-ischemia reperfusion injury and cisplatin-induced acute kidney injury (AKI), although through distinct mechanisms. The present study was based on the hypothesis that pharmacological inhibition of FAAH activity could mitigate cisplatin-induced AKI, exploring potential renoprotective mechanism. Male wild type C57BL/6 were administered an oral gavage of a FAAH inhibitor (PF-04457845, 5mg/kg) or vehicle (10% PEG200+5% Tween80+normal saline) at 72, 48, 24, and 2 hours before and 24 and 48 hours after a single intraperitoneal injection of cisplatin (Cis, 25 mg/kg). Mice were euthanatized 72 hours after cisplatin treatment. Compared to vehicle-treated mice, PF-04457845-treated mice showed a decrease of cisplatin-induced plasma creatinine, blood urea nitrogen levels, kidney injury biomarkers (NGAL and KIM-1) and renal tubular damage. The renal protection from oral gavage of PF-04457845 against cisplatin-induced nephrotoxicity was associated with an enhanced AEA tone and reduced levels of DNA damage response biomarkers p53 and p21. Our work demonstrates that PF-04457845 effectively alleviates cisplatin-induced nephrotoxicity in mice, underscoring the potential of orally targeting FAAH as a novel strategy to prevent cisplatin nephrotoxicity. Oral administration of FAAH inhibitor, can reduce cisplatin-induced DNA damage response, tubular damages, and kidney dysfunction. Inactivation of FAAH could be a potential strategy to prevent cisplatin-induced nephrotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.124.002282 | DOI Listing |
Neuroscience
January 2025
Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland. Electronic address:
Due to the increasing prevalence of depressive and anxiety disorders in youth, a growing interest in the endocannabinoid system (ECS) as a potential alternative target point for treatment arised. This study aimed to investigate whether chronic administration of escitalopram reverses behavioral changes induced by maternal separation in male adolescent Wistar rats and explore the corresponding neurochemical changes in the ECS. The pups were separated from their dams for 360 min daily from postnatal day (PND) 2 until PND 15.
View Article and Find Full Text PDFCurr Top Behav Neurosci
January 2025
Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CBR) and type 2 (CBR) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.
View Article and Find Full Text PDFPharmacol Biochem Behav
December 2024
Department of Pharmacy, Banasthali Vidyapith, Banasthali, India. Electronic address:
Aim: To identify some novel fatty acid hydrolase (FAAH) inhibitors that may contribute to the treatment of Alzheimer's disease (AD).
Methods: In-silico pharmacophore modelling including ligand-based pharmacophore modelling, virtual screening, molecular docking, molecular dynamics modelling, density functional theory and in-silico pharmacokinetics and toxicological studies were employed for the retrieving of novel FAAH inhibitors. Further, these compounds were evaluated for FAAH inhibitory activity using an in vitro enzymatic assay, and later, an in vivo streptozotocin (STZ)-induced AD model was examined in mice.
Int J Mol Sci
November 2024
Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
Cells
November 2024
School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel.
Early life stress (ELS) increases predisposition to major depressive disorder (MDD), with neuroinflammation playing a crucial role. This study investigated the long-term effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on ELS-induced depressive-like behavior and messenger RNA (mRNA) of pro-inflammatory cytokines in the medial prefrontal cortex (mPFC) and CA1 regions. We also assessed whether these gene expression alterations were present at the onset of URB597 treatment during late adolescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!