Trophic strategies of picoeukaryotic phytoplankton vary over time and with depth in the North Pacific Subtropical Gyre.

Environ Microbiol

Daniel K. Inouye Center for Microbial Oceanography: Research and Education, and Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.

Published: July 2024

In oligotrophic oceans, the smallest eukaryotic phytoplankton are both significant primary producers and predators of abundant bacteria such as Prochlorococcus. However, the drivers and consequences of community dynamics among these diverse protists are not well understood. Here, we investigated how trophic strategies along the autotrophy-mixotrophy spectrum vary in importance over time and across depths at Station ALOHA in the North Pacific Subtropical Gyre. We combined picoeukaryote community composition from a 28-month time-series with traits of diverse phytoplankton isolates from the same location, to examine trophic strategies across 13 operational taxonomic units and 8 taxonomic classes. We found that autotrophs and slower-grazing mixotrophs tended to prevail deeper in the photic zone, while the most voracious mixotrophs were relatively abundant near the surface. Within the mixed layer, there was greater phagotrophy when conditions were most stratified and when Chl a concentrations were lowest, although the greatest temporal variation in trophic strategy occurred at intermediate depths (45-100 m). Dynamics at this site are consistent with previously described spatial patterns of trophic strategies. The success of relatively phagotrophic phytoplankton at shallower depths in the most stratified waters suggests that phagotrophy is a competitive strategy for acquiring nutrients when energy from light is plentiful.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.16689DOI Listing

Publication Analysis

Top Keywords

trophic strategies
16
vary time
8
north pacific
8
pacific subtropical
8
subtropical gyre
8
trophic
5
strategies picoeukaryotic
4
phytoplankton
4
picoeukaryotic phytoplankton
4
phytoplankton vary
4

Similar Publications

Expanding the evidence for cross-species viral transmission from trophic interactions of parasitoid wasps and their hosts.

Braz J Microbiol

January 2025

Virus Bioinformatics Laboratory, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus, 45662-900, BA, Brazil.

Parasitoid wasps act as natural biological control agents for several harmful insect species. However, there is a lack of information regarding the exogenous RNA viruses that infect parasitoids and may contribute to the success of their parasitism strategies. This study aimed to investigate the presence, abundance, and replication of known exogenous viruses in two parasitoid wasp species and their corresponding preys.

View Article and Find Full Text PDF

Scavenging is a widespread feeding strategy involving a diversity of taxa from different trophic levels, from apex predators to obligate scavengers. Scavenger species play a crucial role in ecosystem functioning by removing carcasses, recycling nutrients and preventing disease spread. Understanding the trophic roles of scavenger species can help identify specialized species with unique roles and species that may be more vulnerable to ecological changes.

View Article and Find Full Text PDF

VEGF is not only the most potent angiogenic factor, but also an important neurotrophic factor. In this study, vitreous expression of six neurotrophic factors were examined in proliferative diabetic retinopathy (PDR) patients with prior anti-VEGF therapy (n = 48) or without anti-VEGF treatment (n = 41) via ELISA. Potential source, variation and impact of these factors were further investigated in a mouse model of oxygen-induced retinopathy (OIR), as well as primary Müller cells and 661W photoreceptor cell line under hypoxic condition.

View Article and Find Full Text PDF

Microplastics (MPs) and other anthropogenic particles (APs) are pervasive environmental contaminants found throughout marine and aquatic environments. We quantified APs in the edible tissue of black rockfish, lingcod, Chinook salmon, Pacific herring, Pacific lamprey, and pink shrimp, comparing AP burdens across trophic levels and between vessel-retrieved and retail-purchased individuals. Edible tissue was digested and analyzed under a microscope, and a subset of suspected APs was identified using spectroscopy (μFTIR).

View Article and Find Full Text PDF

Similar host instar preferences by three sympatric parasitoids of (Coleoptera: Coccinellidae): potential host niche overlapping.

Bull Entomol Res

January 2025

Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan.

Parasitoids employ diverse oviposition strategies to enhance offspring survival and maximise fitness gains from hosts. Ladybird parasitoids, significant natural enemies of ladybirds, have the potential to disrupt biocontrol efforts, yet their biology and ecology remain poorly understood. This study investigated the host-parasitoid interaction among three sympatric larval endoparasitoids of (Coleoptera: Coccinellidae): (Hymenoptera: Encyrtidae), (Hymenoptera: Proctotrupidae) and (Hymenoptera: Eulophidae).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!