Exposure modes determined the effects of nanomaterials on antibiotic resistance genes: The different roles of oxidative stress and quorum sensing.

Environ Pollut

Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China. Electronic address:

Published: November 2024

The effects of co-occurrent pollutants on antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs) have raised attentions. However, how the different realistic exposure scenarios determining the effects of nanomaterials (NMs) on ARGs, was still unknown. Herein, the effects of NMs on ARGs under two realistic scenarios was investigated by short-term and long-term exposure modes. The presence of NMs with two different exposure modes could both promote the dissemination of ARGs, and the results were dose-, type- and duration-dependent. Compared to short-term exposure, the long-term exposure increased the abundances of ARGs with a greater extent except nano-ZnO. The long-term exposure increased the overall abundances of target ARGs by 2.9%-20.4%, while shot-term exposure caused the 3.4%-10.5% increment. The mechanisms of ARGs fates driven by NMs exposure were further investigated from the levels of microbial community shift, intracellular oxidative stress, and gene abundance. The variations of several potential bacterial hosts did not contribute to the difference in the ARGs transmission with different exposure modes because NMs types played more vital roles in the shift of microbial community compared to the exposure modes. For the short-term exposure, NMs were capable of triggering the QS by upregulating relevant genes, and further activated the production of surfactin and increased membrane permeability, resulting in the facilitation of ARGs transfer. However, NMs under long-term exposure scenario preferentially stimulated oxidative stress by generating more ROS, which then enhanced ARGs dissemination. Therefore, the exposure mode of NMs was one of the pivotal factors determining the ARGs fates by different triggering mechanisms. This study highlighted the importance of exposure scenario of co-occurrent pollutants on ARGs spread, which will benefit the comprehensive understanding of the actual environmental fates of ARGs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.124772DOI Listing

Publication Analysis

Top Keywords

exposure modes
20
long-term exposure
16
exposure
15
args
13
oxidative stress
12
effects nanomaterials
8
antibiotic resistance
8
resistance genes
8
co-occurrent pollutants
8
nms
8

Similar Publications

Liquid crystal elastomers (LCEs) with various deformation properties based on phase transition were widely used as actuators and provided potential to fabricate functional surfaces with tunable microstructure. Herein, we demonstrate a strategy to fabricate dynamic micro wrinkles on LCE surfaces based on LC phase transition. Stable micron-sized surface wrinkles on the anthracene-containing LCE film (AnLCE) are fabricated by ultraviolet exposure induced gradient cross-linking and subsequently stretching-releasing (UV-SR).

View Article and Find Full Text PDF

Purpose: With the development of extracorporeal membrane oxygenation (ECMO) technology, the duration of ECMO support has gradually increased, leading to an increased risk of ECMO-related bacterial resistance. Polymyxin B (PMB) is used to treat drug-resistant bacterial infections. However, the pharmacokinetic (PK) parameters of antibiotics may change during ECMO, resulting in over- or under-exposure.

View Article and Find Full Text PDF

Despite all debates about its safe use, glyphosate remains the most widely applied active ingredient in herbicide products, with renewed approval in the European Union until 2033. Non-target organisms are commonly exposed to glyphosate as a matter of its mode of application, with its broader environmental and biological impacts remaining under investigation. Glyphosate displays structural similarity to phosphoenolpyruvate (PEP), thereby competitively inhibiting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), crucial for the synthesis of aromatic amino acids in plants, fungi, bacteria, and archaea.

View Article and Find Full Text PDF

Considering the increase in demand for rare earth elements (REEs) and their accumulation in soil ecosystems, it is crucial to understand their toxicity. However, the impact of lanthanum, yttrium and cerium oxides (LaO, YO and CeO, respectively) on soil organisms remains insufficiently studied. This study aims to unravel the effects of LaO, YO and CeO nanoparticles (NPs) and their corresponding bulk forms (0, 156, 313, 625, 1250 and 2500 mg/kg) on the terrestrial species Enchytraeus crypticus.

View Article and Find Full Text PDF

Photonic platform coupled with machine learning algorithms to detect pyrolysis products of crack cocaine in saliva: A proof-of-concept animal study.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil. Electronic address:

The non-invasive detection of crack/cocaine and other bioactive compounds from its pyrolysis in saliva can provide an alternative for drug analysis in forensic toxicology. Therefore, a highly sensitive, fast, reagent-free, and sustainable approach with a non-invasive specimen is relevant in public health. In this animal model study, we evaluated the effects of exposure to smoke crack cocaine on salivary flow, salivary gland weight, and salivary composition using Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!