Current processes for the production of recombinant adeno-associated virus (rAAV) are inadequate to meet the surging demand for rAAV-based gene therapies. This article reviews recent advances that hold the potential to address current limitations in rAAV manufacturing. A multidisciplinary perspective on technological progress in rAAV production is presented, underscoring the necessity to move beyond incremental refinements and adopt a holistic strategy to address existing challenges. Since several recent reviews have thoroughly covered advancements in upstream technology, this article provides only a concise overview of these developments before moving to pivotal areas of rAAV manufacturing not well covered in other reviews, including analytical technologies for rapid and high-throughput measurement of rAAV quality attributes, mathematical modeling for platform and process optimization, and downstream approaches to maximize efficiency and rAAV yield. Novel technologies that have the potential to address the current gaps in rAAV manufacturing are highlighted. Implementation challenges and future research directions are critically discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biotechadv.2024.108433 | DOI Listing |
Biotechnol Adv
December 2024
BioCurie, Inc., Wilmington, DE, United States. Electronic address:
Gene therapy is poised to transition from niche to mainstream medicine, with recombinant adeno-associated virus (rAAV) as the vector of choice. However, robust, scalable, industrialized production is required to meet demand and provide affordable patient access, which has not yet materialized. Closing the chasm between demand and supply requires innovation in biomanufacturing to achieve the essential step change in rAAV product yield and quality.
View Article and Find Full Text PDFJ Biotechnol
December 2024
Gene Therapy Process Development, Baxalta Innovations GmbH, part of Takeda companies, Orth an der Donau, 2304 Orth an der Donau, Austria. Electronic address:
This study investigates the crucial role of transfection methods in the manufacturability and potency of recombinant adeno-associated virus (rAAV) gene therapies. By employing a novel analytical approach, multiplex digital PCR (dPCR), we evaluated the impact of different transfection reagents and conditions on the scalability and quality of rAAV. Our research demonstrates that the selection of transfection approach significantly influences not only the yield and ease of scale-up but also the potency of the final product.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2024
Ascend Advanced Therapies CA, Inc, Alameda, CA 94501, USA.
Recombinant adeno-associated virus (rAAV) is a widely used viral vector for gene therapy. However, these vectors have limited availability due to manufacturing challenges with productivity and quality. These challenges can be addressed by better understanding the mechanisms that influence cellular responses during rAAV production.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, North Rhine-Westphalia, Germany.
Current plasmid propagation in E. coli compromises large inverted repeats, such as inverted terminal repeats (ITRs) of adeno-associated virus (AAV). Direct long-read sequencing analyses upon varying strains and culture conditions revealed ITR instability caused by a slipped misalignment mechanism, although other mechanism probably contribute.
View Article and Find Full Text PDFBiotechnol Bioeng
November 2024
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA.
Recombinant adeno-associated virus (rAAV) is a widely used viral vector in gene therapy. To meet the growing clinical demand, a scalable production technology which can efficiently produce high-quality products is required. We have developed a synthetic biology strategy to generate HEK293-based cell lines which have integrated essential AAV and adenoviral helper genes and are capable of producing rAAV upon induction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!