A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Free radical mechanisms of ammonium sulfate as intensively used industrial materials on suppressing organic pollutants. | LitMetric

Free radical mechanisms of ammonium sulfate as intensively used industrial materials on suppressing organic pollutants.

Sci Total Environ

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100080, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University, Wuhan 430056, China.

Published: November 2024

Organic free radicals are critical intermediates for the generation and inhibition of organic pollutants during industrial processes. Clarifying the free radical mechanism of pollutant inhibition is significant for their efficient control. Ammonium sulfate is intensively used in industrial materials to suppress organic pollutants. In this study, organic free radical intermediate species in metal-catalyzed reactions inhibited by ammonium sulfate were identified using continuous-wave electron paramagnetic resonance (EPR) spectroscopy, providing direct evidence for the free radical mechanisms of organic pollutants inhibition. The transverse (T2) and longitudinal (T1) relaxation time variations catalyzed by different metal catalysts in the presence of ammonium sulfate were compared using pulsed-wave EPR. Consequently, after the addition of ammonium sulfate, the observed increase in T2 suggests that ammonium sulfate leads to radical concentration reduction. A decrease in the T1 relaxation time suggests the enhanced interaction between organic radicals and metals, which is an obstacle to subsequent radical reactions. Therefore, ammonium sulfate dominantly changed the free radical intermediates species, concentrations, and their reactivity, and then inhibited the organic pollutants formations. The inhibition mechanisms of ammonium sulfate on metal-catalyzed pollutants were then proposed combining EPR analysis, X-ray characterization, and high-resolution mass spectrometry screening. As a result, (1) occupying the active sites of metal catalysis and (2) inhibiting free radical intermediates are the two main intrinsic inhibition mechanisms of ammonium sulfate. The findings provide new perspectives on the efficient inhibition of organic pollutants in industrial processes involving various metal catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.175644DOI Listing

Publication Analysis

Top Keywords

ammonium sulfate
36
free radical
24
organic pollutants
24
mechanisms ammonium
12
ammonium
9
sulfate
9
organic
9
radical mechanisms
8
sulfate intensively
8
intensively industrial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!