Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human skin is home to a myriad of microorganisms, including bacteria, viruses, fungi, and mites, many of which are considered commensal microbes that aid in maintaining the overall homeostasis or steady-state condition of the skin and contribute to skin health. Our understanding of the complexities of the skin's interaction with its microorganisms is evolving. This knowledge is based primarily on in vitro and animal studies, and more work is needed to understand how this knowledge relates to humans. Here, we introduce the concept of the skin microbiome and discuss skin microbial ecology, some intrinsic factors with potential influence on the human skin microbiome, and possible microbiome-host interactions. The second article of this two-part CME series describes how microbiome alterations may be associated with skin disease, how medications can affect the microbiome, and what microbiome-based therapies are under investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaad.2024.07.1498 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!