Reactive oxygen species (ROS)/reactive nitrogen species (RNS) exert a "double edged" effect on the occurrence and development of ischemic stroke. We previously indicate that atmospheric pressure plasma (APP) shows a neuroprotective effect in vitro based on the ROS/RNS generations. However, the mechanism is still unknown. In this work, SH-SY5Y cells were treated with oxygen and glucose deprivation (OGD) injuries for stimulating the ischemic stroke pathological injury process. A helium APP was used for SH-SY5Y cell treatment for evaluating the neuroprotective impacts of APP preconditioning against OGD injuries with the optimized parameters. During the preconditioning, APP significantly raised the extracellular and intracellular ROS/RNS production. As a result, APP preconditioning increased SH-SY5Y cell autophagy by elevating LC3-II/LC3-I ratio and autophagosome formation. Meanwhile, APP preconditioning reduced cell apoptosis caused by OGD with the increased APP treatment time, which was abolished by pretreatment with autophagy inhibitor 3-methyladenine (3-MA). The ROS scavenger N-acetyl-L-cysteine (NAC) alone or combined with NO scavenger carboxy-PTIO abolished the APP preconditioning induced SH-SY5Y autophagy and the cytoprotection, whereas the NO scavenger alone did not. In addition, we observed the elevated phosphorylation of AMP-activated protein kinase (AMPK) and decreased phosphorylation of mammalian target of rapamycin (mTOR) in APP treated SH-SY5Y cells. This effect was attenuated by AMPK inhibitor Compound C (CC), the ROS scavenger NAC and autophagy inhibitor 3-MA. Furthermore, the cytoprotective effect of APP was preliminarily confirmed in the rats of middle cerebral artery occlusion (MCAO) model. Results showed that APP inhalation by rats during MCAO process could improve neurological functions, reduce cell apoptosis in brain tissues and decrease cerebral infarct volume. Our data suggested that ROS produced by APP preconditioning played a vital role in the neuroprotective effect of SH-SY5Y cells against OGD injuries by activating autophagy and ROS/AMPK/mTOR pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2024.111350 | DOI Listing |
Cell Signal
November 2024
School of Chemistry and Physics and Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
Reactive oxygen species (ROS)/reactive nitrogen species (RNS) exert a "double edged" effect on the occurrence and development of ischemic stroke. We previously indicate that atmospheric pressure plasma (APP) shows a neuroprotective effect in vitro based on the ROS/RNS generations. However, the mechanism is still unknown.
View Article and Find Full Text PDFGlia
July 2024
School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK.
Several in vivo studies have shown that systemic inflammation, mimicked by LPS, triggers an inflammatory response in the CNS, driven by microglia, characterized by an increase in inflammatory cytokines and associated sickness behavior. However, most studies induce relatively high systemic inflammation, not directly compared with the more common low-grade inflammatory events experienced in humans during the life course. Using mice, we investigated the effects of low-grade systemic inflammation during an otherwise healthy early life, and how this may precondition the onset and severity of Alzheimer's disease (AD)-like pathology.
View Article and Find Full Text PDFStroke
April 2023
Peritz Scheinberg Cerebral Vascular Disease Research Laboratories (M.A.L.-M., I.E., I.S., C.W.J., F.J.F., E.A.F., A.P.R., K.R.D., M.A.P.-P.), University of Miami Leonard M. Miller School of Medicine, FL.
Background: Cholinergic cells originating from the nuclei of the basal forebrain (BF) are critical for supporting various memory processes, yet BF cholinergic cell viability has not been explored in the context of focal cerebral ischemia. In the present study, we examined cell survival within several BF nuclei in rodents following transient middle cerebral artery occlusion. We tested the hypothesis that a previously established neuroprotective therapy-resveratrol preconditioning-would rescue BF cell loss, deficits in cholinergic-related memory performance, and hippocampal synaptic dysfunction after focal cerebral ischemia.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2022
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
A series of Co-doped ternary CuCoAl-layered double hydroxide (LDH)/rGO nanosheet array hybrids ( = 0.5, 1.0, 1.
View Article and Find Full Text PDFWorld J Psychiatry
March 2022
Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China.
Background: Oxidative stress results in the production of excess reactive oxygen species (ROS) and triggers hippocampal neuronal damage as well as occupies a key role in the pathological mechanisms of neurodegenerative disorders such as Alzheimer's disease (AD). A recent study confirmed that magnesium had an inhibitory effect against oxidative stress-related malondialdehyde . However, whether Magnesium-L-threonate (MgT) is capable of suppressing oxidative stress damage in amyloid β (Aβ)-treated HT22 cells and the AD mouse model still remains to be investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!