A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative analysis of intermolecular forces in cellulose microfibrils and hemicellulose with AFM nano-colloidal probes. | LitMetric

It is an interesting research topic to study the interfacial interactions between hemicellulose and cellulose, specifically how hemicellulose's structure affects its binding to cellulose nanofibers. Our research proposes that dispersion interaction play an important role in this interfacial interaction, more so than electrostatic forces when considering the adherence of cellulose to xylan. To quantify these interactions, the Atomic Force Microscope (AFM) colloidal probe technique is applied to measure the intermolecular forces between cellulose nanofibers, which are attached to the probe and xylan. These measured forces are then analyzed in relation to the length, diameter and functional groups of the nanocellulose, as well as the molecular weight and side chains of the xylan. Moreover, the predominance of dispersion forces by contrasting the adhesive forces before and after the grafting of a large nonpolar group onto xylan. This modification significantly reduces contact between the cellulose and xylan backbone, thereby markedly diminishing the dispersion interactions. Parallel to the AFM experiments, molecular dynamics (MD) simulations corroborate the experimental results and support our hypotheses. Collectively, these findings contribute to a deeper understanding of polysaccharide interactions within lignocellulose.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.134888DOI Listing

Publication Analysis

Top Keywords

intermolecular forces
8
forces cellulose
8
cellulose nanofibers
8
cellulose xylan
8
forces
6
cellulose
6
xylan
5
quantitative analysis
4
analysis intermolecular
4
cellulose microfibrils
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!