Heterotrophic bacteria in the ocean initiate biopolymer degradation using extracellular enzymes that yield low molecular weight hydrolysis products in the environment, or by using a selfish uptake mechanism that retains the hydrolysate for the enzyme-producing cell. The mechanism used affects the availability of hydrolysis products to other bacteria, and thus also potentially the composition and activity of the community. In marine systems, these two mechanisms of substrate processing have been studied in the water column, but to date, have not been investigated in sediments. In surface sediments from an Arctic fjord of Svalbard, we investigated mechanisms of biopolymer hydrolysis using four polysaccharides and mucin, a glycoprotein. Extracellular hydrolysis of all biopolymers was rapid. Moreover, rapid degradation of mucin suggests that it may be a key substrate for benthic microbes. Although selfish uptake is common in ocean waters, only a small fraction (0.5%-2%) of microbes adhering to sediments used this mechanism. Selfish uptake was carried out primarily by Planctomycetota and Verrucomicrobiota. The overall dominance of extracellular hydrolysis in sediments, however, suggests that the bulk of biopolymer processing is carried out by a benthic community relying on the sharing of enzymatic capabilities and scavenging of public goods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.16687 | DOI Listing |
Environ Microbiol
July 2024
Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Heterotrophic bacteria in the ocean initiate biopolymer degradation using extracellular enzymes that yield low molecular weight hydrolysis products in the environment, or by using a selfish uptake mechanism that retains the hydrolysate for the enzyme-producing cell. The mechanism used affects the availability of hydrolysis products to other bacteria, and thus also potentially the composition and activity of the community. In marine systems, these two mechanisms of substrate processing have been studied in the water column, but to date, have not been investigated in sediments.
View Article and Find Full Text PDFEnviron Microbiol
February 2024
Department of Earth, Marine and Environmental Sciences, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.
Heterotrophic bacteria hydrolyze high molecular weight (HMW) organic matter extracellularly prior to uptake, resulting in diffusive loss of hydrolysis products. An alternative 'selfish' uptake mechanism that minimises this loss has recently been found to be common in the ocean. We investigated how HMW organic matter addition affects these two processing mechanisms in surface and bottom waters at three stations in the North Atlantic Ocean.
View Article and Find Full Text PDFISME Commun
February 2023
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.
Heterotrophic bacteria in the ocean invest carbon, nitrogen, and energy in extracellular enzymes to hydrolyze large substrates to smaller sizes suitable for uptake. Since hydrolysis products produced outside of a cell may be lost to diffusion, the return on this investment is uncertain. Selfish bacteria change the odds in their favor by binding, partially hydrolyzing, and transporting polysaccharides into the periplasmic space without loss of hydrolysis products.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
November 2022
Aix Marseille Univ, CNRS, LCB, Marseille, France, 31 chemin Joseph Aiguier F-13402, Marseille Cedex 20, Marseille, France.
Background: Primary degraders of polysaccharides play a key role in anaerobic biotopes, where plant cell wall accumulates, providing extracellular enzymes to release fermentable carbohydrates to fuel themselves and other non-degrader species. Ruminiclostridium cellulolyticum is a model primary degrader growing amongst others on arabinoxylan. It produces large multi-enzymatic complexes called cellulosomes, which efficiently deconstruct arabinoxylan into fermentable monosaccharides.
View Article and Find Full Text PDFEnviron Microbiol
May 2022
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.
Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton-derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes - extracellular hydrolysis and selfish uptake - have previously been found to change during spring phytoplankton bloom events. Here we investigated seasonal changes in bacterial utilization of three polysaccharides, laminarin, xylan and chondroitin sulfate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!