A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cellulose acetate membranes loaded with WO/g-CN: a synergistic approach for effective photocatalysis. | LitMetric

Cellulose acetate membranes loaded with WO/g-CN: a synergistic approach for effective photocatalysis.

Nanotechnology

Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105 Tamil Nadu, India.

Published: September 2024

The objective of this study is to develop an efficient, easily recoverable membrane-based photocatalyst for removing organic pollutants from aqueous solutions. This study documents the effective synthesis of a novel composite photocatalyst comprising WO/g-CN(WCN) loaded onto cellulose acetate (CA). The physicochemical properties of the synthesized nanocomposites were validated using a range of techniques, including Fourier transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy, and UV-visible diffuse reflectance spectroscopy. SEM analysis revealed that the WCN particles exhibited a well-decorated arrangement on the CA surface in the form of spherical particles. The successfully synthesized film was utilized as a potential adsorbent for removing organic pollutants such as Rhodamine B (Rh-B) and Methylene blue (MB) from aqueous solutions under UV light illumination. The results showcased the significant potential of the WCN@CA nanocomposite, achieving a remarkable 83% and 85% efficiency in eliminating Rh-B and MB. The pseudo-first-order kinetic models were found to be appropriate for both dye adsorption onto the WCN@CA nanocomposite. The WCN@CA catalyst, capable of being reused five times without significant loss of efficiency, shows great potential for decomposing toxic organic pollutants. The novelty of this work lies in the innovative combination of WCN with CA, resulting in a highly efficient and reusable photocatalyst for environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ad71d7DOI Listing

Publication Analysis

Top Keywords

organic pollutants
12
cellulose acetate
8
removing organic
8
aqueous solutions
8
wcn@ca nanocomposite
8
acetate membranes
4
membranes loaded
4
loaded wo/g-cn
4
wo/g-cn synergistic
4
synergistic approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!