Introduction: This study aimed to investigate whether the maternal administration of minocycline, a tetracycline antibiotic known to have anti-inflammatory and neuroprotective properties in models of neural injury, reduces inflammation and neural cell death in a fetal rat model of myelomeningocele (MMC).
Methods: E10 pregnant rats were gavaged with olive oil or olive oil + retinoic acid to induce fetal MMC. At E12, the dams were exposed to regular drinking water or water containing minocycline (range, 40-140 mg/kg/day). At E21, fetal lumbosacral spinal cords were isolated for immunohistochemistry and quantitative gene expression studies focused on microglia activity, inflammation, and apoptosis (P < 0.05).
Results: There was a trend toward decreased activated Iba1+ microglial cells within the dorsal spinal cord of MMC pups following minocycline exposure when compared to water (HO) alone (P = 0.052). Prenatal minocycline exposure was correlated with significantly reduced expression of the proinflammatory cytokine, IL-6 (minocycline: 1.75 versus HO: 3.52, P = 0.04) and apoptosis gene, Bax (minocycline: 0.71 versus HO: 1.04, P < 0.001) among MMC pups.
Conclusions: This study found evidence that the maternal administration of minocycline reduces selected markers of inflammation and apoptosis within the exposed dorsal spinal cords of fetal MMC rats. Further study of minocycline as a novel prenatal treatment strategy to mitigate spinal cord damage in MMC is warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jss.2024.07.088 | DOI Listing |
In Vitro Cell Dev Biol Anim
January 2025
Department of Critical Care Medicine, The Qujing NO.1 People's Hospital, Qujing, 655000, Yunnan, China.
Melatonin (MEL), functioning as a circulating hormone, is important for the regulation of ferroptosis in different health scenarios and acts as a crucial antioxidant in cardiovascular diseases. However, its specific function in ferroptosis related to myocardial ischemia-reperfusion injury (MIRI) remains to be fully elucidated. In our research, we utilized a rat model of MIRI induced by coronary artery ligation, along with a cell model subjected to hypoxia/reoxygenation (H/R).
View Article and Find Full Text PDFPharmacol Rep
January 2025
Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
Tacrolimus (TAC) is an immunosuppressant widely utilized in organ transplantation. One of its primary adverse effects is glucose metabolism disorder, which significantly increases the risk of diabetes. Investigating the molecular mechanisms underlying TAC-induced diabetes is essential for developing effective prevention and treatment strategies for these adverse effects.
View Article and Find Full Text PDFSleep Breath
January 2025
Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
Background: Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH.
View Article and Find Full Text PDFEur J Histochem
January 2025
Department of Critical Care Medicine, The Qujing No.1 People's Hospital, Qujing.
Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.
View Article and Find Full Text PDFSwiss Med Wkly
January 2025
Cancer Center und Research Center, Cantonal Hospital Graubünden, Chur, Switzerland.
Background And Objective: Because of the lack of effective targeted treatment options, docetaxel has long been the standard second-line therapy for patients with advanced non-small cell lung cancer, including the Kirsten rat sarcoma virus (KRAS) G12C mutation. The CodeBreak 200 trial demonstrated that sotorasib, a new drug targeting the G12C-mutated KRAS protein, modestly improved progression-free survival compared with docetaxel in patients whose cancer had progressed after receiving platinum chemotherapy and programmed cell death protein 1 (PD-1) / programmed death ligand 1 (PD-L1) inhibitors as first-line treatment. Consequently, sotorasib received temporary approval in Switzerland.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!