Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Robust perfect adaptation, a system property whereby a variable adapts to persistent perturbations at steady state, has been recently realized in living cells using genetic integral controllers. In certain scenarios, such controllers may lead to "integral windup," an adverse condition caused by saturating control elements, which manifests as error accumulation, poor dynamic performance, or instabilities. To mitigate this effect, we here introduce several biomolecular anti-windup topologies and link them to control-theoretic anti-windup strategies. This is achieved using a novel model reduction theory that we develop for reaction networks with fast sequestration reactions. We then show how the anti-windup topologies can be realized as reaction networks and propose intein-based genetic designs for their implementation. We validate our designs through simulations on various biological systems, including models of patients with type I diabetes and advanced biomolecular proportional-integral-derivative (PID) controllers, demonstrating their efficacy in mitigating windup effects and ensuring safety.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338268 | PMC |
http://dx.doi.org/10.1126/sciadv.adl5439 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!