Flavonoids are secondary metabolites associated with plant seed coat and flower color. These compounds provide health benefits to humans as anti-inflammatory and antioxidant compounds. The expression of the late biosynthetic genes in the flavonoid pathway is controlled by a ternary MBW protein complex consisting of interfacing MYB, beta-helix-loop-helix (bHLH), and WD40 Repeat (WDR) proteins. P, the master regulator gene of the flavonoid expression in common bean (Phaseolus vulgaris L.), was recently determined to encode a bHLH protein. The T and Z genes control the distribution of color in bean seeds and flowers and have historically been considered regulators of the flavonoid gene expression. T and Z candidates were identified using reverse genetics based on genetic mapping, phylogenetic analysis, and mutant analysis. Domain and AlphaFold2 structure analyses determined that T encodes a seven-bladed β-propeller WDR protein, while Z encodes a R2R3 MYB protein. Deletions and SNPs in T and Z mutants, respectively, altered the 3D structure of these proteins. Modeling of the Z MYB/P bHLH/T WDR MBW complex identified interfacing sequence domains and motifs in all three genes that are conserved in dicots. One Z MYB motif is a possible beta-molecular recognition feature (β-MoRF) that only appears in a structured state when Z MYB is modeled as a component of a MBW complex. Complexes containing mutant T and Z proteins changed the interaction of members of the complex in ways that would alter their role in regulating the expression of genes in the flavonoid pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457125 | PMC |
http://dx.doi.org/10.1093/g3journal/jkae184 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!