As the most common endocrine cancer, thyroid cancer (TC) has sharply increased globally over the past three decades. The growing incidence of TC might be counted by genetics, radiation, iodine, autoimmune disease, and exposure to environmental endocrine-disrupting chemicals (EDCs). Polybrominated diphenyl ethers (PBDEs), being typical EDCs, have been widely utilized in plastics, electronics, furniture, and textiles as flame retardants since the 1980s, and research has indicated a significant correlation between their exposure and the risk of TC. Even so, PBDEs exposure impact on the metabolic signature for TC remains unexplored. In this study, eight congeners of PBDEs were determined in serum from 111 patents with papillary thyroid cancer (PTC) and 111 healthy participants based on case-control epidemiology using gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (GC-APCI-MS/MS). Based on the tertile distribution of total PBDEs concentrations in 59 participants, metabolomics analysis was further performed by ultra-high performance liquid chromatography coupled to hybrid quadrupole-Orbitrap MS. In the partial correlation analysis, the 29 identified metabolites were correlated with PBDEs exposure (P < 0.05). In addition, PBDEs disrupted the metabolism of glycerophospholipids, sphingolipids, taurine, and hypotaurine, indicating that neurotransmitters, oxidative stress, and inflammation are the vulnerable pathways affected in PTC. Furthermore, (±)-octopamine and 5-hydroxyindole, both of which modulate the actions of neurotransmitters, emerged as potential disturbed metabolite markers for TC following exposure to PBDEs. This study analyzed the impact of PBDEs on PTC in terms of the metabolic changes and further explored possible biomarkers, which helped us have a deep understanding of the possible mechanism of the effects of PBDEs on TC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338980PMC
http://dx.doi.org/10.1007/s10653-024-02158-1DOI Listing

Publication Analysis

Top Keywords

pbdes exposure
12
polybrominated diphenyl
8
diphenyl ethers
8
ethers pbdes
8
papillary thyroid
8
thyroid cancer
8
pbdes
6
exposure
5
identification serum
4
serum metabolites
4

Similar Publications

Association between brominated flame retardants and periodontitis: a large-scale population-based study.

Front Public Health

January 2025

The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.

Background: The association between brominated flame retardants (BFRs) and periodontitis has remained unclear.

Methods: This research included adult participants from NHANES cycles 2009-2014. Survey-weighted generalized linear regressions were used to explore the associations between BFR exposure and periodontitis.

View Article and Find Full Text PDF

Introduction And Objective: Polybrominated diphenyl ethers (PBDEs) are a class of flame-retarding synthetic compounds. They may cause a potential threat to human health due to their bio-accumulative and toxicological properties, and ubiquitous presence in the environment. Food, and ingested dust constitute principal sources of human exposure to PBDEs.

View Article and Find Full Text PDF

Accumulation of lipophilic and proteinophilic halogenated organic pollutants (HOPs) in the different types of feathers of laying hens.

J Hazard Mater

December 2024

State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.

This study investigated the bioaccumulation of halogenated organic pollutants (HOPs) in three types of feathers from laying hens through exposure experiments. The HOPs included lipophilic polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), as well as proteinophilic perfluoroalkyl carboxylic acids (PFCAs). Concentrations of PCBs, PBDEs, and short-chain PFCAs (≤8) were significantly higher in the body feathers than in the primary feathers, while long-chain PFCAs (>8) showed no significant differences among primary, tail, and body feathers.

View Article and Find Full Text PDF

Industrialization has led to significant increases in the types and quantities of pollutants, with environmental pollutants widely present in various media, including the air, food, and everyday items. These pollutants can enter the human body via multiple pathways, including ingestion through food and absorption through the skin; this intrusion can disrupt the production, release, and circulation of hormones in the body, resulting in a range of illnesses that affect the reproductive, endocrine, and nervous systems. Consequently, these pollutants pose substantial risks to human health.

View Article and Find Full Text PDF

Persistent organic pollutants and fatty acids in humpback whales: Antarctic and Chilean feeding and Brazilian breeding sites.

Sci Total Environ

December 2024

Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP 05508-120, Brazil.

Article Synopsis
  • The study examined the fatty acid profiles and persistent organic pollutant (POP) levels in humpback whales from different regions of the Southern Ocean, Chile, and Brazil.
  • Significant differences were found in the fatty acid compositions, with whales in the Strait of Magellan showing a diet high in higher trophic level prey, while those from the Antarctic Peninsula and Brazil reflected a krill-based diet.
  • Elevated concentrations of pollutants, especially PCBs, were observed in whales from the Strait of Magellan, indicating a connection between their dietary habits and exposure to contaminants.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!