Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
ACS Nano
Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
Published: September 2024
Transition metal dichalcogenides (TMDCs) are at the forefront of nanophotonics because of their exceptional optical characteristics. The 2D architecture of TMDCs facilitates efficient light absorption and emission, holding tantalizing potential for next-generation nanophotonic and quantum devices. Yet, the atomic thinness limits their interaction volume with light, affecting light-matter interaction and quantum efficiency. The light coupling in the 2D layered TMDCs can be enhanced by integration with photonic structure, and the metasurfaces supporting bound states in the continuum (BICs) offer strong confinement of optical fields, ideal for coupling with 2D TMDCs. Here, we demonstrate enhanced light-matter coupling by integrating TMDC monolayers, including WSe and MoS, with a finite-area membrane metasurface, leading to amplified and high-quality-factor (-factor) spontaneous emission from quasi-BIC-coupled TMDC monolayers. The high--factor emission extends over an area with a scale of a few micrometers while maintaining the high- factor across the emission area. Notably, the suspended finite-area membrane metasurface, which is freestanding in air rather than positioned atop a substrate, minimizes radiation loss while enhancing light-matter interaction in the TMDC monolayer. Furthermore, the predominantly in-plane dipole orientation of excitons within TMDC monolayers results in distinctive enhancement behaviors for emission, contingent on the excitation power, when coupled with quasi-BIC modes exhibiting TE and TM resonances. This work introduces a nanophotonic platform for robust coupling of membrane metasurfaces with 2D materials, offering possibilities for developing 2D material-based nanophotonic and quantum devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c05560 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.