In recent times, biochar has emerged as a novel approach for environmental remediation due to its exceptional adsorption capacity, attributed to its porous structure formed by the pyrolysis of biomass at elevated temperatures in oxygen-restricted conditions. This characteristic has driven its widespread use in environmental remediation to remove pollutants. When biochar is introduced into ecosystems, it usually changes the makeup of microbial communities by offering a favorable habitat. Its porous structure creates a protective environment that shields them from external pressures. Consequently, microorganisms adhering to biochar surfaces exhibit increased resilience to environmental conditions, thereby enhancing their capacity to degrade pollutants. During this process, pollutants are broken down into smaller molecules through the collaborative efforts of biochar surface groups and microorganisms. Biochar is also often used in conjunction with composting techniques to enhance compost quality by improving aeration and serving as a carrier for slow-release fertilizers. The utilization of biochar to support sustainable agricultural practices and combat environmental contamination is a prominent area of current research. This study aims to examine the beneficial impacts of biochar application on the absorption and breakdown of contaminants in environmental and agricultural settings, offering insights into its optimization for enhanced efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10653-024-02142-9 | DOI Listing |
Sci Rep
December 2024
College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, 010019, China.
Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA. Electronic address:
Phosphate (PO(III)) contamination in water bodies poses significant environmental challenges, necessitating efficient and accurate methods to predict and optimize its removal. The current study addresses this issue by predicting the adsorption capacity of PO(III) ions onto biochar-based materials using five probabilistic machine learning models: eXtreme Gradient Boosting LSS (XGBoostLSS), Natural Gradient Boosting, Bayesian Neural Networks (NN), Probabilistic NN, and Monte-Carlo Dropout NN. Utilizing a dataset of 2952 data points with 16 inputs, XGBoostLSS demonstrated the highest R (0.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Haidian District, Beijing 100083, China.
Dimethoate is a toxic organophosphorus insecticide and its contamination of water poses a threat to the surrounding ecosystem. In order to enhance the removal effect of ferrate (Fe(VI)) on dimethoate, modified graphene-like biochar (SIZBC) with reduction and adsorption properties was prepared in this study. Compared with Fe(VI) alone, the removal of dimethoate by Fe(VI)/SIZBC increased from 26 % to more than 97 %, and the reaction rate was accelerated by 34 times.
View Article and Find Full Text PDFPoult Sci
December 2024
DTU National Food Institute, Research Group for Foodborne Pathogens and Epidemiology, Henrik Dams Allé, 2800 Kgs. Lyngby, Denmark.
The Campylobacter prevalence in free-ranging broiler flocks is usually higher than in conventional flocks, and effective interventions for this production type are needed. This study aimed to investigate the on-farm Campylobacter-reducing effect of feeding three feed additives or a water additive to broilers from hatching to slaughter. Newly hatched Ranger Gold broilers (n = 140) were randomly placed into five cages (n = 28/cage) within a flock of 6,000 broilers.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
The aim of the current investigation is to explore the novel application of pumpkin, papaya, and orange peels as growth substrates for microalgae cultivation, with the overarching goal of advancing a sustainable "Agro to Agro" biorefinery paradigm. The research evaluates the integration of waste management practices into microalgal production, optimizing growth parameters to maximize output. Optimal concentrations of 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!