Self-immolative chemistries that respond in an irreversible manner to external stimuli are highly attractive to permanently degrade filamentous supramolecular biomaterials. Within the monomer, a balance needs to be struck between its capacity to be supramolecularly polymerized and degraded at an appropriate rate for a given application. Herein, we unravel the structure-property-function relationships of a library of squaramide-based bolaamphiphiles bearing a central disulfide-based self-immolative spacer to construct supramolecular polymers responsive to chemical stimuli in aqueous solutions. We examine the impact of changing the alkyl domain length (2 to 12 methylene units) on the formation of supramolecular filaments and their rate of degradation in response to a biological antioxidant, glutathione. A minimum of an octyl spacer is required to robustly form supramolecular polymers that can be irreversibly degraded through a cyclization-elimination reaction of the self-immolative spacer triggered by thiol-disulfide exchange. Further increasing the peripheral alkyl chain length to a decyl spacer increases the ordered packing of the amphiphiles, hindering their chemical degradation. This study provides a framework to design chemically responsive filamentous supramolecular polymers based on bolaamphiphiles that can be irreversibly degraded in aqueous solutions for their eventual application as biomedical materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.202400348 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
The ongoing soft actuation has accentuated the demand for dielectric elastomers (DEs) capable of large deformation to replace the traditional rigid mechanical apparatus. However, the low actuation strain of DEs considerably limits their practical applications. This work developed high-performance polyurethane-urea (PUU) elastomers featuring large actuation strains utilizing an approach of kinetic control over the microphase separation structure during the fabrication process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
The advancement of underwater monitoring technologies has been significantly hampered by the limitations of traditional electrical sensors, particularly in the presence of electromagnetic interference and safety concerns in aquatic environments. Fiber optic sensors are therefore nowadays widely applied to underwater monitoring devices. However, silicon- and polymer-based optical fibers often face challenges, such as rigidity, susceptibility to environmental stress, and limited operational flexibility.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania.
The locomotion of various organisms relies on the alternated elongation-contraction of their muscles or bodies. Such biomimicry can offer a promising approach to developing soft robotic devices with improved mobility and efficiency. Most strategies to mimic such motions rely on reversible size modifications of some materials upon exposure to external stimuli.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Oak Ridge National Laboratory, Chemical Sciences Division, UNITED STATES OF AMERICA.
Precise sub-Ångstrom-level porosity engineering, which is appealing in gas separations, has been demonstrated in solid carbon, polymer, and framework materials but rarely achieved in the liquid phase. In this work, a gas molecular sieving effect in the liquid phase at sub-5 Ångstrom scale is created via sophisticated porosity tuning in calixarene-derived porous liquids (PLs). Type II PLs are constructed via supramolecular complexation between the sodium salts of calixarene derivatives and crown ether solvents.
View Article and Find Full Text PDFChem Sci
December 2024
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
The chemical recycling of polystyrene (PS) waste to value-added aromatic compounds is an attractive but formidable challenge due to the inertness of the C-C bonds in the polymer backbone. Here we develop a light-driven, copper-catalyzed protocol to achieve aerobic oxidation of various alkylarenes or real-life PS waste to benzoic acid and oxidized styrene oligomers. The resulting oligomers can be further transformed under heating conditions, thus achieving benzoic acid in up to 65% total yield through an integrated one-pot two-step procedure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!