Background: Dermal fillers have emerged as a popular non-surgical solution for facial rejuvenation and enhancement. Apart from botulinum toxin injections, they are the most common non-surgical procedure performed in the US. Line-field optical coherence tomography (LC-OCT; deepLive system Damae Medical, France) represents one of the most recent developments in non-invasive skin imaging technologies.
Materials And Methods: We performed LC-OCT image acquisition on six patients that were treated with hyaluronic acid (HA) dermal fillers in various locations on the face. The images were acquired before the application of the fillers (T0), immediately after (T1), and at a 6- to 8-week (T2) follow-up visit.
Results: At T0, we were able to appreciate a normal-appearing epidermis, dermoepithelial junction, and dermis. At T1, the intradermal filler deposits appeared as homogeneously hyporeflective areas, clearly discernible from surrounding vessels and other structures. At T2, the deposits were distinguishable as hyporeflective areas, although they were diminished in size compared to T1. On enface view, collagen fibers had increased thickness and were more homogeneously organized and hyperreflective.
Conclusions: We established the usefulness of LC-OCT in the non-invasive evaluation of dermal HA fillers to visualize both short-term and medium-term effects. LC-OCT may be a valuable tool in evaluating the precise location of filler placement and follow-up of resulting in vivo changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337925 | PMC |
http://dx.doi.org/10.1111/srt.70014 | DOI Listing |
J Cosmet Dermatol
January 2025
Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea.
Background: Ultrasonography allows real-time imaging of facial soft tissue during hyaluronic acid (HA) filler injections. However, there is currently limited guidance relating to ultrasound-guided HA filler placement in the upper face.
Aims: To develop guidance for the effective use of ultrasonography to improve the safety of HA filler injection procedures.
Case Rep Dent
December 2024
Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
Dermal fillers such as hyaluronic acid (HA) have been widely used in recent years as a less surgically invasive cosmetic treatment. Although delayed foreign body granuloma may occur as a rare adverse reaction after the procedure, detailed histological reports are still limited. When occurring on the buccal mucosa of the oral cavity, the histopathology may resemble some lesions of minor salivary gland origin due to the material properties of HA.
View Article and Find Full Text PDFGels
November 2024
School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan.
This study presents the development of thiol-maleimide/thiol-thiol double self-crosslinking hyaluronic acid-based (HA) hydrogels for use as dermal fillers. Hyaluronic acid with varying degrees of maleimide substitution (10%, 20%, and 30%) was synthesized and characterized, and HA hydrogels were fabricated using two molecular weights of four-arm polyethylene glycol (PEG10K/20K)-thiol as crosslinkers. The six resulting HA hydrogels demonstrated solid-like behavior with distinct physical and rheological properties.
View Article and Find Full Text PDFAesthetic Plast Surg
December 2024
Research and Innovation Hub, Innovation Aesthetics, London, WC2H 9JQ, UK.
Introduction: Aesthetic medicine has evolved towards minimally invasive procedures, with biostimulators like Poly-L-Lactic Acid (PLLA), Calcium Hydroxylapatite (CaHA), and Polycaprolactone (PCL) gaining attention for their role in collagen induction, improving skin texture, elasticity, and volume. Combining these agents with other treatments-such as botulinum toxin, dermal fillers, and energy-based devices (e.g.
View Article and Find Full Text PDFNano Lett
December 2024
School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
Excessive reactive oxygen species (ROS) generated by ultraviolet (UV) irradiation significantly contribute to photoaging by increasing the level of matrix metalloproteinases (MMPs), accelerating collagen degradation. Commercial dermal fillers offer temporary wrinkle reduction via volume enhancement. In this study, we propose tilapia-derived collagen hydrogels embedded with ceria nanoparticles (Ce@Col gels) as long-lasting dermal fillers for UVB-induced photoaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!