Deep Learning Segmentation of Infiltrative and Enhancing Cellular Tumor at Pre- and Posttreatment Multishell Diffusion MRI of Glioblastoma.

Radiol Artif Intell

From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.).

Published: September 2024

Purpose To develop and validate a deep learning (DL) method to detect and segment enhancing and nonenhancing cellular tumor on pre- and posttreatment MRI scans in patients with glioblastoma and to predict overall survival (OS) and progression-free survival (PFS). Materials and Methods This retrospective study included 1397 MRI scans in 1297 patients with glioblastoma, including an internal set of 243 MRI scans (January 2010 to June 2022) for model training and cross-validation and four external test cohorts. Cellular tumor maps were segmented by two radiologists on the basis of imaging, clinical history, and pathologic findings. Multimodal MRI data with perfusion and multishell diffusion imaging were inputted into a nnU-Net DL model to segment cellular tumor. Segmentation performance (Dice score) and performance in distinguishing recurrent tumor from posttreatment changes (area under the receiver operating characteristic curve [AUC]) were quantified. Model performance in predicting OS and PFS was assessed using Cox multivariable analysis. Results A cohort of 178 patients (mean age, 56 years ± 13 [SD]; 116 male, 62 female) with 243 MRI timepoints, as well as four external datasets with 55, 70, 610, and 419 MRI timepoints, respectively, were evaluated. The median Dice score was 0.79 (IQR, 0.53-0.89), and the AUC for detecting residual or recurrent tumor was 0.84 (95% CI: 0.79, 0.89). In the internal test set, estimated cellular tumor volume was significantly associated with OS (hazard ratio [HR] = 1.04 per milliliter; < .001) and PFS (HR = 1.04 per milliliter; < .001) after adjustment for age, sex, and gross total resection (GTR) status. In the external test sets, estimated cellular tumor volume was significantly associated with OS (HR = 1.01 per milliliter; < .001) after adjustment for age, sex, and GTR status. Conclusion A DL model incorporating advanced imaging could accurately segment enhancing and nonenhancing cellular tumor, distinguish recurrent or residual tumor from posttreatment changes, and predict OS and PFS in patients with glioblastoma. Segmentation, Glioblastoma, Multishell Diffusion MRI © RSNA, 2024.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427928PMC
http://dx.doi.org/10.1148/ryai.230489DOI Listing

Publication Analysis

Top Keywords

cellular tumor
28
multishell diffusion
12
mri scans
12
patients glioblastoma
12
milliliter 001
12
tumor
10
deep learning
8
tumor pre-
8
pre- posttreatment
8
mri
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!