Close Packing in Trans Conformers Promotes the Formation of Supramolecular Structures with C Symmetry.

J Phys Chem Lett

Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.

Published: August 2024

Assemblies with C symmetry exhibit important applications in many fields such as enantioselective catalysis. However, their formation is challenging due to their large entropic disadvantage, and molecular information on their formation dynamics is limited because of the lack of effective characterization techniques. Here, using achiral amphiphilic molecules such as N-oleoyl ethanolamide (OEA) and its analogues as modeling assembly units, we demonstrated that the sss polarization signals, generated by femtosecond sum frequency generation vibrational spectroscopy (SFG-VS), provide a powerful tool to monitor the formation dynamics of the C symmetric supramolecular structures at the interfaces. The trans conformation of the assembly units can provide strong π-π interactions and thus produce enough enthalpy to drive the formation of C symmetric supramolecular structures. However, the cis conformation impedes the assembly of C symmetric structures and cannot generate sss and chiral polarization SFG signals. These findings may aid in rationally constructing ordered and functional superstructures and understanding the mechanism of chirality formation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c01857DOI Listing

Publication Analysis

Top Keywords

supramolecular structures
12
formation dynamics
8
assembly units
8
symmetric supramolecular
8
formation
6
close packing
4
packing trans
4
trans conformers
4
conformers promotes
4
promotes formation
4

Similar Publications

Where Does the Proton Go? Structure and Dynamics of Hydrogen-Bond Switching in Aminophosphine Chalcogenides.

Angew Chem Int Ed Engl

January 2025

University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.

Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.

View Article and Find Full Text PDF

Computationally designed 29-residue peptides yield tetra-α-helical bundles with symmetry. The "bundlemers" can be bifunctionally linked via thiol-maleimide cross-links at their N-termini, yielding supramolecular polymers with unusually large, micrometer-scale persistence lengths. To provide a molecularly resolved understanding of these systems, all-atom molecular modeling and simulations of linked bundlemers in explicit solvent are presented.

View Article and Find Full Text PDF

In a systematic study, six pseudopolymorphic coordination polymers containing the ditopic 1,3-di(pyridin-4-yl)urea ligand (4bpu) constructed with d metal cations, possessing the formula {[M(4bpu)I]S} [(M = Zn, Cd and Hg), (S = MeOH or EtOH)], namely Zn-MeOH, Zn-EtOH, Cd-MeOH, Cd-EtOH, Hg- and Hg-EtOH were obtained. The title compounds were characterized by single-crystal X-ray diffraction analysis (SC-XRD), elemental analysis (CHN), FT-IR spectroscopy, thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). The diffraction studies show that these compounds are isostructural 1D zig-zag chain coordination polymers which is also confirmed using XPac 2.

View Article and Find Full Text PDF

Light-Induced Transformation from Covalent to Supramolecular Polymer Networks.

ACS Macro Lett

January 2025

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Stimuli-responsive polymers have demonstrated significant potential in the development of smart materials due to their capacity to undergo targeted property changes in response to external physical or chemical stimuli. However, the scales of response in most existing stimuli-responsive polymer systems are mainly focused on three levels: functional units, chain conformations, or polymer topologies. Herein, we have developed a covalent polymer network (CPN) capable of converting into a supramolecular polymer network (SPN) within bulk materials directly at the scale of polymer network types.

View Article and Find Full Text PDF

PSMA-targeted delivery of docetaxel in prostate cancer using small-sized PDA-based micellar nanovectors.

J Control Release

January 2025

Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain. Electronic address:

In this study, we present the first comparative analysis of active and passive drug delivery systems for docetaxel (DTX) in prostate cancer using supramolecular self-assembled micellar nanovectors. Specifically, we developed two novel micelles based on polydiacetylenic amphiphiles (PDA) for passive and active targeting. The active targeting micelles were designed with a prostate-specific membrane antigen (PSMA) ligand, ACUPA, to facilitate recognition by PSMA-positive cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!