Background: Pepper blight, caused by Phytophthora capsici, is a devastating disease that seriously threatens pepper production worldwide. With the emergence of resistance in P. capsici against conventional fungicides, there is an urgent need to explore novel alternatives for pepper blight management. This study aims to assess the inhibitory effect of chloroinconazide (CHI), a compound synthesized from tryptophan, against pepper blight, and to explore its potential mechanisms of action.
Results: The results demonstrated that CHI effectively targeted P. capsici, disrupting its growth and mycelial structure, which resulted in the release of dissolved intracellular substances. Additionally, CHI significantly inhibited the sporangium formation, zoospores release, and zoospores germination, thereby reducing the re-infection of P. capsici. In contrast, the commercial pesticide methylaxyl only inhibited mycelial growth and had limited effect on re-infection, while azoxystrobin inhibited re-infection but had a weak inhibitory effect on mycelial growth. Furthermore, CHI activated the salicylic acid (SA) signaling pathway-mediated immune response to inhibit P. capsici infection in pepper, with this activation being contingent upon cyclic nucleotide-gated ion channel CaCNGC9.
Conclusion: CHI exhibited potent dual inhibitory effects on P. capsici by disrupting mycelial structure and activating the CaCNGC9-mediated SA signaling pathway. These dual mechanisms of action suggested that CHI could serve as a promising alternative chemical fungicide for the effective management of pepper blight, offering a new approach to control this devastating disease. Our findings highlighted the potential of CHI as a sustainable and efficient solution to combat the increasing resistance of P. capsici to conventional fungicides, ensuring better crop protection and yield. © 2024 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.8383 | DOI Listing |
Sci Rep
January 2025
College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80526, USA.
Phytophthora blight caused by Phytophthora capsici is a serious disease affecting a wide range of plants. Biochar as a soil amendment could partially replace peat moss and has the potential to suppress plant diseases, but its effects on controlling phytophthora blight of container-grown peppers have less been explored, especially in combination of biological control using Trichoderma. In vitro (petri dish) and in vivo (greenhouse) studies were conducted to test sugarcane bagasse biochar (SBB) and mixed hardwood biochar (HB) controlling effects on pepper phytophthora blight disease with and without Trichoderma.
View Article and Find Full Text PDFPlant Dis
November 2024
Institute of Plant Protection, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan, China, 450002;
J Adv Res
October 2024
China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China. Electronic address:
PLoS One
September 2024
College of Plant Protection, Hunan Agricultural University, Changsha, Huan, China.
A significant population of biocontrol microorganisms resides in the rhizosphere of plants, which can be utilized for plant disease control. To explore the potential of rhizosphere soil microorganisms as biocontrol agents against pepper blight, a bacterial strain Pa608 was screened from rhizosphere soil of pepper and identified as Pseudomonas aeruginosa through morphological characteristics and 16S rRNA sequences. The result showed that the strain Pa608 demonstrated antagonistic activity against Phytophthora capsici, effectively suppressing mycelial growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!