Intelligent Supramolecular Modification for Implants: Endogenous Regulation of Bone Defect Repair in Osteoporosis.

Adv Mater

Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, China.

Published: October 2024

Addressing osteoporosis-related bone defects, a supramolecular strategy is innovated for modifying carbon fiber reinforced polyether ether ketone (CF/PEEK) composites. By covalently attaching intelligent macromolecules via in situ RAFT polymerization, leveraging the unique pathological microenvironment in patients with iron-overloaded osteoporosis, intelligent supramolecular modified implant surface possesses multiple endogenous modulation capabilities. After implantation, surface brush-like macromolecules initially resist macrophage adhesion, thereby reducing the level of immune inflammation. Over time, the molecular chains undergo conformational changes due to Fe (III) mediated supramolecular self-assembly, transforming into mechanistic signals. These signals are then specifically transmitted to pre-osteoblast cell through the binding capacity of the KRSR short peptide at the molecular terminus, induced their osteogenic differentiation via the YAP/β-catenin signaling axis. Furthermore, osteoblasts secrete alkaline phosphatase (ALP), which significantly hydrolyzes phosphate ester bonds in surface macromolecular side groups, resulting in the release of alendronate (ALN). This process further improves the local osteoporotic microenvironment. This intelligent surface modification tailors bone repair to individual conditions, automatically realize multiple endogenous regulation once implanted, and truly realize spontaneous activation of a series of responses conducive to bone repair in vivo. It is evidenced by improved bone regeneration in iron-overloaded osteoporotic rabbits and supported by in vitro validations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202406227DOI Listing

Publication Analysis

Top Keywords

intelligent supramolecular
8
endogenous regulation
8
multiple endogenous
8
bone repair
8
bone
5
intelligent
4
supramolecular modification
4
modification implants
4
implants endogenous
4
regulation bone
4

Similar Publications

"All-in-one" nano-system for smart delivery and imaging-guided combination therapy of triple-negative breast cancer.

J Colloid Interface Sci

December 2024

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:

Triple-negative breast cancer (TNBC) with highly malignant and aggressive, still faces challenges in treatment due to the single treatment and side effects. It is urgent to develop an advanced theranostic platform against TNBC. Herein, an "all-in-one" nano-system Au/Cu nanodots/doxorubicin@nanospheres (Au/CuNDs/DOX@NS) with dual-responsive properties was designed for dual-mode imaging-guided combination treatment of TNBC.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy: a half-century historical perspective.

Chem Soc Rev

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.

Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers.

View Article and Find Full Text PDF

Injectable behavior is often observed in polymer-based hydrogels yet is rarely achieved in low-molecular-weight hydrogels (LMWHs), the realization of which may boost the development of new soft materials for biomedical applications. Here, we report on injectable self-healing and antidissolving LMWHs that are formed through a simple ionic cross-linking strategy, showing a fundamental application for the encapsulation of living cells. The LMWHs are formed by simply mixing Ca with negatively charged supramolecular polymers.

View Article and Find Full Text PDF

A synergistic combination of cationic styrylpyridinium dyes and water-soluble deep cavitand hosts can recognize phosphorylated peptides with both site- and state-selectivity. Two mechanisms of interaction are dominant: either the cationic dye interacts with Trp residues in the peptide or the host:dye pair forms a heteroternary complex with the peptide, driven by both strong dye-peptide and cavitand-peptide binding ( values up to 4 μM). The presence of multiple recognition mechanisms results in varying fluorescence responses dependent on the phosphorylation state and position, eliminating the need for covalent modification of the peptide target.

View Article and Find Full Text PDF

Dynamically Tunable Chiroptical Activities of Flexible Chiral Plasmonic Film via Surface Buckling.

Small

December 2024

School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Rd. Pudong, Shanghai, 201210, P. R. China.

Article Synopsis
  • Plasmonic nanoparticle-based chiral materials utilize strong light-matter interaction and tunable resonance frequencies but face challenges in dynamic modulation of their chiroptical properties.
  • Researchers created chiral assemblies using gold nanospheres (AuNSs) through mechanical-induced surface buckling, resulting in a unique "S-shaped" 3D structure that enhances circular dichroism (CD) responses.
  • This method allows for reversible adjustments in CD signal magnitude and handedness, presenting opportunities for advanced applications in information encryption and paving the way for new design strategies in chiral optical materials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!