Effects of light quality and intensity on phycobiliprotein productivity in two Leptolyngbya strains isolated from southern Bahia's Atlantic Forest.

An Acad Bras Cienc

Universidade Federal do Sul da Bahia, Centro de Formação em Ciências Ambientais, Rodovia BR 367, Km 10, s/n, 45810-000 Porto Seguro, BA, Brazil.

Published: August 2024

AI Article Synopsis

  • Cyanobacterial phycocyanin and phycoerythrin are valuable for nutrition and healthcare, leading to increased commercial interest.
  • Research focused on two strains of Leptolyngbya under various light colors and intensities revealed distinct pigment production patterns.
  • Results indicated that light color and intensity significantly affect biomass and pigment accumulation, helping to optimize growth conditions for more efficient production of these beneficial compounds.

Article Abstract

Cyanobacterial phycocyanin and phycoerythrin are gaining commercial interest due to their nutrition and healthcare values. This research analyzed the biomass accumulation and pigment production of two strains of Leptolyngbya under different combinations of light colors and intensities. The results showed that while Leptolyngbya sp.4 B1 (B1) produced all phycobiliproteins, Leptolyngbya sp.5 F2 (F2) only had phycocyanin and allophycocyanin. Both the color of the light and its light intensity affect the biomass accumulation and phycoerythrin concentration in strain B1. Although white light at medium intensity (50 μmol m-2 s-1) causes greater biomass accumulation (1.66 ± 0.13 gDW L-1), low-intensity (25 μmol m-2 s-1) green light induces lower biomass accumulation with twice the pigment content (87.70 ± 2.46 mg gDW -1), culminating in 71% greater productivity. In contrast, for the F2 strain, light intensity positively influenced biomass and pigment accumulation, being observed 2.25 ± 0.10 gDW L-1 under white light at 100 μmol m-2 s-1 and higher phycocyanin concentration (138.38 ± 3.46 mg gDW -1) under red light at 100 μmol m-2 s-1. These findings provide insights into optimizing the growth conditions by altering the intensity and wavelength of light for future production of phycocyanin and phycoerythrin from local cyanobacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1590/0001-3765202420230348DOI Listing

Publication Analysis

Top Keywords

biomass accumulation
16
μmol m-2
16
m-2 s-1
16
light
9
phycocyanin phycoerythrin
8
accumulation pigment
8
light intensity
8
white light
8
gdw l-1
8
light 100
8

Similar Publications

Concern over nanoplastic contamination of wetland ecosystems has been increasing. However, little is known about the effect of photoaging on the distribution and biological response of the nanoplastics. Here, palladium-labeled polystyrene nanoplastics (PS-Pd NPs) at 0.

View Article and Find Full Text PDF

Introduction: Vitex L. is a large genus of tropical and subtropical trees used in medicine of many nations. Some species are used in gynecology due to flavonoids, iridoids, and diterpenes.

View Article and Find Full Text PDF

Background: A deletion mutation in the degron tail of auxin coreceptor IAA2 was found to confer resistance to the herbicide 2,4-D in Sisymbrium orientale. Given the importance of auxin signalling in plant development, this study was conducted to investigate whether this deletion mutation may affect plant fitness.

Results: The F progeny of crosses with two resistant populations P2 (P2♂ × S♀) and P13 (P13♂ × S♀) were used in this study.

View Article and Find Full Text PDF

The alga contains salt and heavy metals that are accumulated in algae poses a significant challenge to the safe use of algae in soil fertilization and other applications. This study examines the relevance of algal biomass as an environmentally friendly fertilizer, thereby contributing to sustainable coastal management practices. In this study, the hot and cold extraction method were done to obtain the Ulva rigida extract.

View Article and Find Full Text PDF

Mechanism of Exogenous Melatonin to Alleviate the Fermentation Performance of Saccharomyces cerevisiae Under Copper Stress.

J Pineal Res

March 2025

College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Shaanxi Engineering Research Center of Characteristic Fruit Directional Design and Machining, Northwest A&F University, Yangling, China.

Melatonin is involved in biological adverse stress response and enhances the ability of yeast to adapt to adverse conditions. This study investigated the mechanism of exogenous melatonin addition to Saccharomyces cerevisiae (S. cerevisiae) under copper stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!