Background: Tumor mutation burden (TMB) and VHL mutation play a crucial role in the management of patients with clear cell renal cell carcinoma (ccRCC), such as guiding adjuvant chemotherapy and improving clinical outcomes. However, the time-consuming and expensive high-throughput sequencing methods severely limit their clinical applicability. Predicting intratumoral heterogeneity poses significant challenges in biology and clinical settings. Our aimed to develop a self-supervised attention-based multiple instance learning (SSL-ABMIL) model to predict TMB and VHL mutation status from hematoxylin and eosin-stained histopathological images.

Methods: We obtained whole slide images (WSIs) and somatic mutation data of 350 ccRCC patients from The Cancer Genome Atlas for developing SSL-ABMIL model. In parallel, 163 ccRCC patients from Clinical Proteomic Tumor Analysis Consortium cohort was used as independent external validation set. We systematically compared three different models (Wang-ABMIL, Ciga-ABMIL, and ImageNet-MIL) for their ability to predict TMB and VHL alterations.

Results: We first identified two groups of populations with high- and low-TMB (cut-off point = 0.9). In two independent cohorts, the Wang-ABMIL model achieved the highest performance with decent generalization performance (AUROC = 0.83 ± 0.02 and 0.8 ± 0.04 in predicting TMB and VHL, respectively). Attention heatmaps revealed that the Wang-ABMIL model paid the highest attention to tumor regions in high-TMB patients, while in VHL mutation prediction, non-tumor regions were also assigned high attention, particularly the stromal regions infiltrated by lymphocytes.

Conclusions: Our results indicated that SSL-ABMIL can effectively extract histological features for predicting TMB and VHL mutation, demonstrating promising results in linking tumor morphology and molecular biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336896PMC
http://dx.doi.org/10.1002/cam4.70112DOI Listing

Publication Analysis

Top Keywords

vhl mutation
20
tmb vhl
20
mutation
8
tumor mutation
8
mutation burden
8
ssl-abmil model
8
predict tmb
8
ccrcc patients
8
wang-abmil model
8
predicting tmb
8

Similar Publications

Background & Aims: Pancreatic cysts often pose challenges in predicting malignant progression. Next-generation sequencing has become an appealing ancillary diagnostic test. The diagnostic performance is well characterized, but the impact on clinical management remains unclear.

View Article and Find Full Text PDF

The histologic differential diagnosis between intracranial hemangioblastoma (HB) and metastatic clear cell renal cell carcinoma may be challenging, especially considering that both tumors exhibit clear cell morphology and can be associated with vHL mutation and/or Von Hippel-Lindau syndrome. As the execution of immunohistochemical analyses is often mandatory, the expression of PAX8 has been traditionally considered a reliable marker of metastatic clear cell renal cell carcinoma, being consistently negative in intracranial HB. However, as in recent years, some cases of PAX8-positive HBs have been reported in the literature; we studied the expression of this antibody on a series of 23 intracranial HB, showing that about 40% of these tumors may express PAX8 and that this immunoreactivity is often focal and weak.

View Article and Find Full Text PDF

Selective Degradation of TEADs by a PROTAC Molecule Exhibited Robust Anticancer Efficacy In Vitro and In Vivo.

J Med Chem

January 2025

Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Province 750004, China.

Genetic mutations in components of the Hippo pathway frequently lead to the aberrant activation of TEADs, which is often associated with cancer. Consequently, TEADs have been actively pursued as therapeutic targets for diseases driven by TEAD overactivation. In this study, we report two series of TEAD PROTACs based on CRBN binders and VHL binders.

View Article and Find Full Text PDF

Background: Renal hemangioblastoma (HB) is a rare extra-central nervous system (CNS) tumor, typically not linked to Von Hippel-Lindau (VHL) Syndrome, and its underlying genetic drivers and molecular mechanisms remain elusive. The objective of this study is to investigate the clinicopathological features and molecular genetic changes of primary renal hemangioblastomas.

Methods: Herein, the clinical, imaging, clinicopathological features, and immunophenotype in 3 cases of renal HB were retrospectively analyzed.

View Article and Find Full Text PDF

The current research revealed a strong link between lipid reprogramming and dysregulated lipid metabolism to the genesis and development of clear cell renal cell carcinoma (ccRCC). Pathologically, ccRCC exhibits a high concentration of lipid droplets within the cytoplasm. HIF-2α expression has previously been demonstrated to be elevated in ccRCC caused by mutations in the von Hippel-Lindau (VHL) gene, which plays a vital role in the development of renal cell carcinoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!