Background And Aims: Changing precipitation regimes can influence terrestrial plants and ecosystems. However, plant phenological responses to changing precipitation temporal patterns and the underlying mechanisms are largely unclear. This study was conducted to explore the effects of seasonal precipitation redistribution on plant reproductive phenology in a temperate steppe.
Methods: A field experiment with control (C), advanced (AP) and delayed (DP) growing-season precipitation peaks, and the combination of AP and DP (ADP) were employed. Seven dominant plant species were selected and divided into two functional groups (early- vs. middle-flowering species, shallow- vs. deep-rooted species) to monitor reproductive phenology including budding, flowering, and fruiting date, as well as reproductive duration for four growing seasons from 2015 to 2017, and 2022.
Key Results: The AP, but not DP treatment advanced the phenological (i.e., budding, flowering, and fruiting) dates and lengthened the reproductive duration across the 4 growing seasons and 7 monitored species. In addition, the phenological responses showed divergent patterns among different plant functional groups, which could be attributed to shifts in soil moisture and its variability in different months and soil depths. Moreover, species with lengthened reproductive duration increased phenological overlap with other species, which could have a negative impact on their dominance under the AP treatment.
Conclusions: Our findings reveal that changing precipitation seasonality could have considerable impacts on plant phenology by affecting soil water availability and variability. Incorporating these two factors simultaneously in the phenology models will help us understand the response of plant phenology under intensified changing precipitation scenarios. In addition, the observations of decreased dominance for the species with lengthened reproductive duration suggest that changing reproductive phenology can have a potential to affect community composition in grasslands under global change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/aob/mcae138 | DOI Listing |
Proc Biol Sci
January 2025
Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
To forecast how fast populations can adapt to climate change, it is essential to determine the evolutionary potential of different life-cycle stages under selection. In birds, timing of gonadal development and moult are primarily regulated by photoperiod, while laying date is highly phenotypically plastic to temperature. We tested whether geographic variation in phenology of these life-cycle events between populations of great tits () has a genetic basis, indicating that contemporary genetic adaptation is possible.
View Article and Find Full Text PDFAoB Plants
January 2025
Department of Biology, 10 Bailey Drive, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
Drought-induced changes in floral traits can disrupt plant-pollinator interactions, influencing pollination and reproductive success. These phenotypic changes likely also affect natural selection on floral traits, yet phenotypic selection studies manipulating drought remain rare. We studied how drought impacts selection to understand the potential evolutionary consequences of drought on floral traits.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Department of Botany & Forestry, Vidyasagar University, Midnapore 721102, West Bengal, India.
Reproductive traits and plant-pollinator interactions largely depend on seasonal weather conditions, which are species-specific. is an ornamental plant distributed worldwide. There is little information about plant species' reproductive ecology and environmental factors' impact on it.
View Article and Find Full Text PDFBiology (Basel)
December 2024
College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China.
Floral phenology and features are intricately linked to pollinator behavior and pollination systems. is one of the ornamental irises of the family Iridaceae with beautiful flowers and leaves, and little research has been reported on its pollination biology. This study analyzed how phenology, floral features, breeding systems, and pollinator visits affect reproductive success of populations in Jilin Province.
View Article and Find Full Text PDFAoB Plants
January 2025
INRAE, URP3F, 86600 Lusignan, France.
Perennial grasses' reproductive phenology profoundly impacts plant morphogenesis, biomass production, and perenniality in natural ecosystems and cultivated grasslands. Complex interactions between vegetative and reproductive development complicate grass phenology prediction for various environments and genotypes. This work aims to analyse genetic × environment interactions effects on tiller growth and reproductive development in Three perennial ryegrass cultivars, Bronsyn, Carvalis, and Tryskal, were grown from seedling to heading under four inductive conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!