The study presents for the first time complex spinel NiFeO nanoparticles supported on nitrogen and phosphorus co-doped carbon nanosheets (NPCNS) prepared using sol gel and the carbonization of graphitic carbon nitride with lecithin as a highly active and durable electrocatalyst for oxygen reduction reaction. The physicochemical properties of complex spinel NiFeO on NPCNS and subsequent nanomaterials were investigated using techniques such as X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The electrochemical activity of the electrocatalysts was evaluated using hydrodynamic linear sweep voltammetry, cyclic voltammetry, electrochemical impedance spectroscopy, and chronoamperometry. The electrocatalytic performance of the NiFeO/NPCNS nanohybrid electrocatalyst is dominated by the 4e transfer mechanism, with an onset potential of 0.92 V vs. RHE, which is closer to that of the Pt/C, and a current density of 7.81 mA/cm that far exceeds that of the Pt/C. The nanohybrid demonstrated the best stability after 14 400 s, outstanding durability after 521 cycles, and the best ability to oxidize methanol and remove CO from its active sites during CO tolerance studies. This improved catalytic activity can be attributed to small nanoparticle sizes of the unique complex spinel nickel ferrite structure, NFe/Ni coordination of nanocomposite, high dispersion, substantial ECSA of 47.03 mF/cm, and synergy caused by strong metal-support and electronic coupling interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334865PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e35483DOI Listing

Publication Analysis

Top Keywords

complex spinel
16
spinel nifeo
12
nitrogen phosphorus
8
phosphorus co-doped
8
co-doped carbon
8
oxygen reduction
8
reduction reaction
8
elucidating effects
4
effects nitrogen
4
complex
4

Similar Publications

Compositionally complex doping of spinel oxides toward high-entropy oxides is expected to enhance their electrochemical performance substantially. We successfully prepared high-entropy compounds, the oxide (ZnMgCoCu)FeO (HEOFe), lithiated oxyfluoride Li(ZnMgCoCu)FeOF (LiHEOFeF), and lithiated oxychloride Li(ZnMgCoCu)FeOCl (LiHEOFeCl) with a spinel-based cubic structure by ball milling and subsequent heat treatment. The products exhibit particles with sizes from 50 to 200 nm with a homogeneous atomic distribution.

View Article and Find Full Text PDF

Microwave catalytic treatment using magnetically separable CoFeO spinel catalyst for high-rate degradation of malachite green dye.

J Environ Manage

December 2024

Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India. Electronic address:

The release of toxic chemical dyes from the industrial effluent poses huge challenges for the environmental engineers to treat it. Azo dyes encompass the huge part of textile discharges which are difficult to degrade due to their complex chemical aromatic structures and due to the presence of strong bonds (-N=N-). Thus, the removal of a carcinogenic azo dye (i.

View Article and Find Full Text PDF

X and Q-band EMR study of ultrasmall ZnMnFeO spinel nanoparticles fabricated under nonhydrolytic conditions.

Dalton Trans

December 2024

Department of Biotechnology, Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow PL35-310, Poland.

In this work, we are showing the results of the X- and Q-band electron magnetic resonance measurements of ultra-small ZnMnFeO nanoparticles ( 8 nm) with a very narrow size distribution. The chosen synthetic route allows for precise structural modifications with a broad concentration range ( = 0, 0.2, 0.

View Article and Find Full Text PDF

The Jahn-Teller (JT) deformation triggers severe structural distortion and large capacity fading in the cathode materials of alkali-ion batteries. Although conventional doping containing over 20 dopant species has been demonstrated to suppress the JT effect, how the short-range and cooperative JT effect are regulated remains an open question. Recently, the new compositionally complex (high entropy) doping has been validated in various oxide cathodes and achieved "zero strain", but the reported "synergistic effect" is largely factual reporting with a limited fundamental understanding of the link between multicomponents and the JT effect.

View Article and Find Full Text PDF

Thermodynamic Simulation and Laboratory-Scale Experiments of Tin Smelting at AlO Saturation.

ACS Omega

December 2024

Metallurgical Engineering Research Group, Faculty of Mining and Petroleum Engineering, Bandung Institute of Technology, Bandung 40132, Indonesia.

A significant issue encountered in smelting operations is the corrosion of refractory materials that come into direct contact with the molten slag. Magnesia-based refractories are commonly used in nonferrous smelting operations. On the other hand, alumina-based refractories emerge as a possible alternative, particularly when dealing with the unpredictable slag compositions, owing to alumina's amphoteric characteristic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!