The solvent regeneration in the post-combustion carbon capture process usually relies on steam from the power plant steam cycle. This heat duty is one of the challenges of energy consumption in PCC (Post-combustion Carbon Capture). However, this practice results in a significant energy penalty, leading to a substantial reduction in the capacity of the Power Plant, estimated to be between 19.5 and 40 %. This paper investigate the techno-economic feasibility of a solar-assisted regeneration process for the PCC industrial scale with diglycolamine solvent. The study aims to assess the impact of system configuration modifications, such as LVC (Lean Vapor Compression), SPCC (Solar Post-combustion Carbon Capture), and combinations of trough or compound solar collectors with LVC, on energy efficiency and overall plant performance. With 3E analysis for SPCC configuration results show that this configuration. However, reducing energy consumption and energy penalty factor, exhibits a decrease in exergy and exergoeconomic efficiency compared to the other configurations in terms of exergy and exergoeconomic aspects. However, the LVC + SCSS (Solar Combined Separator-Stripper) configuration demonstrates the best performance across the 3E aspects, resulting in a reduction energy penalty to 12.2 % and improvements of 38 % and 4.2 % in exergy and exergoeconomic factors, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334862PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e35316DOI Listing

Publication Analysis

Top Keywords

post-combustion carbon
16
carbon capture
16
energy penalty
12
exergy exergoeconomic
12
feasibility solar-assisted
8
solar-assisted regeneration
8
regeneration post-combustion
8
power plant
8
energy consumption
8
energy
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!