Transplantation of spermatogonial stem cells in stallions.

J Anim Sci Technol

Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Korea.

Published: July 2024

Spermatogonial stem cells originate from gonocytes and undergo self-renewal and differentiation to generate mature spermatozoa via spermatogenesis in the seminiferous tubules of the testis in male mammals. Owing to the unique capacity of these cells, the spermatogonial stem cell transplantation technique, which enables the restoration of male fertility by transfer of germlines between donor and recipient males, has been developed. Thus, spermatogonial stem cell transplantation can be used as an important next-generation reproductive and breeding tool in livestock production. However, in large animals, this approach is associated with many technical limitations and inefficiency. Furthermore, research regrading spermatogonial stem cell transplantation in stallions is limited. Therefore, this review article describes the history and current knowledge regarding spermatogonial stem cell transplantation in animals and challenges in establishing an experimental protocol for successful spermatogonial stem cell transplantation in stallions, which have been presented under the following heads: spermatogonial stem cell isolation, recipient preparation, and spermatogonial stem cell transplantation. Additionally, we suggest that further investigation based on previous unequivocal evidence regarding donor-derived spermatogenesis in large animals must be conducted. A detailed and better understanding of the physical and physiological aspects is required to discuss the current status of this technique field and develop future directions for the establishment of spermatogonial stem cell transplantation in stallions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331362PMC
http://dx.doi.org/10.5187/jast.2024.e30DOI Listing

Publication Analysis

Top Keywords

spermatogonial stem
40
stem cell
32
cell transplantation
28
transplantation stallions
12
stem
10
spermatogonial
9
transplantation
8
stem cells
8
cell
8
large animals
8

Similar Publications

Arsenic in drinking water has been associated with an increased risk of health concerns. This metalloid is ingested and distributed throughout the body, accumulating in several organs, including the testis. In this organ, arsenic disturbs steroidogenesis and spermatogenesis and affects male fertility.

View Article and Find Full Text PDF

Icariin targets PDE5A to regulate viability, DNA synthesis and DNA damage of spermatogonial stem cells and improves reproductive capacity.

Asian J Androl

January 2025

Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China.

Icariin is a pure compound derived from Epimedium brevicornu Maxim, and it helps the regulation of male reproduction. Nevertheless, the role and underlying mechanisms of Icariin in mediating male germ cell development remain to be clarified. Here, we have demonstrated that Icariin promoted proliferation and DNA synthesis of mouse spermatogonial stem cells (SSCs).

View Article and Find Full Text PDF

Partial rejuvenation of the spermatogonial stem cell niche after gender-affirming hormone therapy in trans women.

Elife

January 2025

Biology of the Testis (BITE) Laboratory, Genetics, Reproduction and Development (GRAD) Research Group, Vrije Universiteit Brussel, Brussels, Belgium.

Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys.

View Article and Find Full Text PDF

The Chicken Promoter and Its Regulation by MYC and HIF1A.

Genes (Basel)

November 2024

Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.

Background: Histone deacetylase 4 () is a member of the class II histone deacetylase family, whose members play a crucial role in various biological processes. An in-depth investigation of the transcriptional characteristics of chicken can provide fundamental insights into its function.

Methods: We examined expression in chicken embryonic stem cells (ESC) and spermatogonial stem cells (SSC) and cloned a 444 bp fragment from upstream of the chicken transcription start site.

View Article and Find Full Text PDF

Core factor of NEXT complex, ZCCHC8, governs the silencing of LINE1 during spermatogenesis.

Natl Sci Rev

January 2025

State Key Laboratory of Cardiology and Medical Innovation Center, Department of Reproductive Medicine Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.

The overactivation of transposable elements (TEs) is a significant threat to male reproduction, particularly during the delicate process of spermatogenesis. Here, we report that zinc finger protein ZCCHC8-a key component of the nuclear exosome targeting (NEXT) complex that is involved in ribonucleic acid (RNA) surveillance-is required for TE silencing during spermatogenesis. Loss of ZCCHC8 results in delayed meiotic progression and reduced production of round spermatids (RS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!