Introduction: Type 2 diabetes (T2D) is the predominant form of diabetes mellitus and is among the leading causes of death with an increasing prevalence worldwide. However, the pathological mechanism underlying T2D remains complex and unclear. An increasing number of studies have suggested an association between circadian clock disruption and high T2D prevalence.

Method: This review explores the physiological and genetic evidence underlying T2D symptoms associated with circadian clock disturbances, including insulin secretion and glucose metabolism.

Results And Discussion: Notably, circadian clock disruption reduces insulin secretion and insulin sensitivity and negatively affects glucose homeostasis. The circadian clock regulates the hypothalamic-pituitary-adrenal axis, an important factor that regulates glucose metabolism and influences T2D progression. Therefore, circadian clock regulation is an attractive, novel therapeutic approach for T2D, and various circadian clock stabilizers play therapeutic roles in T2D. Lastly, this review suggests novel therapeutic and preventive approaches using circadian clock regulators for T2D.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333352PMC
http://dx.doi.org/10.3389/fphys.2024.1435848DOI Listing

Publication Analysis

Top Keywords

circadian clock
32
clock disruption
12
circadian
8
type diabetes
8
t2d
8
underlying t2d
8
insulin secretion
8
novel therapeutic
8
clock
7
disruption type
4

Similar Publications

This prospective cohort study is aimed to investigate circadian variations in corneal parameters, focusing on sleep-deprived subjects. Sixty-four healthy individuals (age range: 21-76 years) actively participated in this study, undergoing examinations at least five times within a 24-hour timeframe. The analysis encompassed keratometric parameters of the cornea's front (F) and back (B) surfaces, refractive power in flattest and steepest axes (K1, K2), astigmatism (Astig) and its axis (Axis), aspheric coefficient (Asph), corneal pachymetry values of thinnest corneal thickness (Pachy Min) and corneal thickness in the center of the pupil (Pachy Pupil), volume relative to the 3 and 10 mm corneal diagonal (Vol D3, Vol D10) and surface variance index (ISV).

View Article and Find Full Text PDF

Prokineticin 2 protein is diurnally expressed in PER2 containing clock neurons in the mouse suprachiasmatic nucleus.

Peptides

January 2025

Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Expression of prokineticin 2 (PK2) mRNA in the suprachiasmatic nucleus (SCN), also knowns as the brain's clock, exhibits circadian oscillations with peak levels midday, zeitgeber time (ZT) 4, and almost undetectable levels during night. This circadian expression profile has substantially contributed to the suggested role of PK2 as an SCN output molecule involved in transmitting circadian rhythm of behavior and physiology. Due to unreliable specificity of PK2 antibodies, the 81 amino acid protein has primarily been studied at the mRNA level and correlation between circadian oscillating mRNAs and protein products are infrequent.

View Article and Find Full Text PDF

Maintaining homeostasis is essential for continued health, and the progressive decay of homeostatic processes is a hallmark of ageing. Daily environmental rhythms threaten homeostasis, and circadian clocks have evolved to execute physiological processes in a manner that anticipates, and thus mitigates, their effects on the organism. Clocks are active in almost all cell types; their rhythmicity and functional output are determined by a combination of tissue-intrinsic and systemic inputs.

View Article and Find Full Text PDF

Circadian biology of cardiac aging.

J Mol Cell Cardiol

December 2024

Kinesiology & Health, University of Wyoming, Laramie, WY, USA; Zoology & Physiology, University of Wyoming, Laramie, WY, USA. Electronic address:

The age of the U.S. population is increasing alongside a growing burden of age-related cardiovascular disease.

View Article and Find Full Text PDF

The abundance and behaviour of all hematopoietic components display daily oscillations, supporting the involvement of circadian clock mechanisms. The daily variations of immune cell functions, such as trafficking between blood and tissues, differentiation, proliferation, and effector capabilities are regulated by complex intrinsic (cell-based) and extrinsic (neuro-hormonal, organism-based) mechanisms. While the role of the transcriptional/translational molecular machinery, driven by a set of well-conserved genes (Clock genes), in nucleated immune cells is increasingly recognized and understood, the presence of non-transcriptional mechanisms remains almost entirely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!