Human milk oligosaccharides (HMOs) are an evolutionarily significant advantage bestowed by mothers for facilitating the development of the infant's gut microbiota. They can avoid absorption in the stomach and small intestine, reaching the colon successfully, where they engage in close interactions with gut microbes. This process also enables HMOs to exert additional prebiotic effects, including regulating the mucus layer, promoting physical growth and brain development, as well as preventing and mitigating conditions such as NEC, allergies, and diarrhea. Here, we comprehensively review the primary ways by which gut microbiota, including Bifidobacteria and other genera, utilize HMOs, and we classify them into five central pathways. Furthermore, we emphasize the metabolic benefits of bacteria consuming HMOs, particularly the recently identified intrinsic link between HMOs and the metabolic conversion of tryptophan to indole and its derivatives. We also examine the extensive probiotic roles of HMOs and their recent research advancements, specifically concentrating on the unsummarized role of HMOs in regulating the mucus layer, where their interaction with the gut microbiota becomes crucial. Additionally, we delve into the principal tools used for functional mining of new HMOs. In conclusion, our study presents a thorough analysis of the interaction mechanism between HMOs and gut microbiota, emphasizing the cooperative utilization of HMOs by gut microbiota, and provides an overview of the subsequent probiotic effects of this interaction. This review provides new insights into the interaction of HMOs with the gut microbiota, which will inform the mechanisms by which HMOs function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1541-4337.13431 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!