Nanostructured Surfaces Enhance Nucleation Rate of Calcium Carbonate.

Small

Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, CH-8092, Switzerland.

Published: November 2024

Nucleation and growth of calcium carbonate on surfaces is of broad importance in nature and technology, being essential to the calcification of organisms, while negatively impacting energy conversion through crystallization fouling, also called scale formation. Previous work studied how confinements, surface energies, and functionalizations affect nucleation and polymorph formation, with surface-water interactions and ion mobility playing important roles. However, the influence of surface nanostructures with nanocurvature-through pit and bump morphologies-on scale formation is unknown, limiting the development of scalephobic surfaces. Here, it is shown that nanoengineered surfaces enhance the nucleation rate by orders of magnitude, despite expected inhibition through effects like induced lattice strain through surface nanocurvature. Interfacial and holographic microscopy is used to quantify crystallite growth and find that nanoengineered interfaces experience slower individual growth rates while collectively the surface has 18% more deposited mass. Reconstructions through nanoscale cross-section imaging of surfaces coupled with classical nucleation theory-utilizing local nanocurvature effects-show the collective enhancement of nano-pits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579968PMC
http://dx.doi.org/10.1002/smll.202402690DOI Listing

Publication Analysis

Top Keywords

surfaces enhance
8
enhance nucleation
8
nucleation rate
8
calcium carbonate
8
scale formation
8
nucleation
5
nanostructured surfaces
4
rate calcium
4
carbonate nucleation
4
nucleation growth
4

Similar Publications

APE1-Activated and NIR-II Photothermal-Enhanced Chemodynamic Therapy Guided by Amplified Fluorescence Imaging.

Anal Chem

January 2025

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.

The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.

View Article and Find Full Text PDF

Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.

View Article and Find Full Text PDF

Construction of an electrochemical sensor for the detection of methyl parathion with three-dimensional graphdiyne-carbon nanotubes.

Mikrochim Acta

January 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

To enhance the application performance of graphdiyne (GDY) in electrochemical sensing, carbon nanotubes (CNTs) were grown in situ to construct three-dimensional nanoarchitectures of GDY-CNTs composites. GDY-CNTs showed superior electrochemical properties and detection response to MP when compared with GDY, as the in situ growth of CNTs significantly increased the electrode surface area and enhanced the electron transfer process. GDY-CNTs were successfully used to construct electrochemical sensors for methyl parathion (MP).

View Article and Find Full Text PDF

Purpose: To assess the impact of autologous serum (AS) tears at a 50% concentration on the ocular surface of patients with refractory dry eye disease (DED) because of Sjogren syndrome.

Methods: Twenty eyes of ten patients with severe immune-mediated DED were contralaterally randomized to receive either AS tears 50% or artificial tears between June 2021 and May 2023. Changes in tear stability, ocular surface staining, and in the morphology of the corneal sub-basal nerves were evaluated before treatment and at 1, 2, and 3 months after treatment using objective tests for DED and confocal microscopy.

View Article and Find Full Text PDF

Enhanced Efficiency of Anionic Guerbet-Type Amino Acid Surfactants.

Langmuir

January 2025

Research Focus Area for Chemical Resource Beneficiation, Catalysis and Synthesis Research Group, North-West University, 11 Hoffman Street, Potchefstroom 2522, South Africa.

This study investigates the surfactant properties and efficiency of linear and Guerbet-type amino acid surfactants. Utilizing a Wilhelmy plate method, we assessed the colloidal efficiency of these surfactants, with the lowest observed critical micelle concentration at 0.046 mmol L, significantly reducing surface tension to as low as 25.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!