AI Article Synopsis

  • - Quantum networks aim to transmit qubits between devices using processes like entanglement distribution and swapping, which are crucial but can degrade performance due to their probabilistic nature.
  • - The study focuses on optimizing resource allocation in these networks by modeling the problem with integer linear programming (ILP) and a heuristic algorithm to minimize the number of required entangled qubit pairs.
  • - Simulations show that while the heuristic provides solutions close to optimal, the utilization of entangled pairs is significantly influenced by factors like the probability of entanglement and the characteristics of the quantum memory.

Article Abstract

Quantum networks are designed to transmit quantum bits (qubits) among quantum devices to enable new network resources for the applications. Entanglement distribution and entanglement swapping are fundamental procedures that are required in several network operations. However, they are probabilistic operations, which can lead to severe network performance degradation. This article investigates the engineering problem of resource allocation in quantum networks, considering factors like entanglement distribution probability, quantum memory characteristics, and fidelity. We model this as an optimization model to obtain an optimal solution. In particular, we formulate an integer linear programming (ILP) and develop a heuristic algorithm, aiming to minimize the number of required entangled qubit pairs (Bell pairs or EPR pairs) in any adjacent pair in the quantum network. Extensive simulations are performed to compare the performance of proposed ILP and heuristic. In all the cases, the heuristic produces a comparable solution to the optimal one. Simulation results ensure that the value of maximum utilized Bell pairs in a quantum network highly depends on the value of the probability of entangled pairs established, considering the time in the quantum memory besides the number of incoming requests.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336113PMC
http://dx.doi.org/10.1038/s41598-024-70114-1DOI Listing

Publication Analysis

Top Keywords

entanglement distribution
12
quantum networks
12
quantum
9
quantum memory
8
bell pairs
8
quantum network
8
network
5
pairs
5
optimal routing
4
routing end-to-end
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!