Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper introduces a new latent variable probabilistic framework for representing spectral data of high spatial and spectral dimensionality, such as hyperspectral images. We use a generative Bayesian model to represent the image formation process and provide interpretable and efficient inference and learning methods. Surprisingly, our approach can be implemented with simple tools and does not require extensive training data, detailed pixel-by-pixel labeling, or significant computational resources. Numerous experiments with simulated data and real benchmark scenarios show encouraging image classification performance. These results validate the unique ability of our framework to discriminate complex hyperspectral images, irrespective of the presence of highly discriminative spectral signatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336186 | PMC |
http://dx.doi.org/10.1038/s41598-024-69732-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!