A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The evolution of patch-clamp electrophysiology: robotic, multiplex, and dynamic. | LitMetric

The patch-clamp technique has been the gold standard for analysis of excitable cells. Since its development in the 1980s it has contributed immensely to our understanding of neurons, muscle cells, and cardiomyocytes, and the ion channels and receptors that reside within them. This technique, predicated on Ohm's law, enables precise measurements of macroscopic excitability patterns, and ionic and gating conductances that can be assessed even down to the single channel level. Over the years, patch-clamp electrophysiology has undergone extensive modifications, with the introduction of new applications that have enhanced its power and reach. The most recent evolution of this technique occurred with the introduction of robotic high throughput automated platforms that enable high quality simultaneous recordings, in both voltage- and current-clamp modes, from 10s to 100s of cells, including cells freshly isolated from their native tissues. Combined with new dynamic-clamp applications, these new methods provide increasingly powerful tools for studying the contributions of ion channels and receptors to electrogenesis. In this brief review, we provide an overview of these enhanced patch-clamp techniques, followed by some of the applications presently being pursued, and a perspective into the potential future of the patch-clamp method. The patch-clamp technique, introduced in the 1980s, has revolutionized understanding of electrogenesis. Predicated on Ohm's law, this approach facilitates exploration of ionic conductances, gating mechanisms of ion channels and receptors, and their roles in neuronal, muscular, and cardiac excitability. Robotic platforms for high-throughput patch-clamp, and dynamic-clamp, have recently expanded its reach. Here, we outline new advances in patch-clamp including high throughput analysis of freshly-isolated neurons, and discuss the increasingly powerful trajectory of new patch-clamp techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1124/molpharm.124.000954DOI Listing

Publication Analysis

Top Keywords

ion channels
12
channels receptors
12
patch-clamp electrophysiology
8
patch-clamp
8
patch-clamp technique
8
predicated ohm's
8
ohm's law
8
high throughput
8
increasingly powerful
8
patch-clamp techniques
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!