Spiders manipulate and exploit bioluminescent signals of fireflies.

Curr Biol

State Key Laboratory of Biocatalysis and Enzyme Engineering and Center for Behavioral Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore. Electronic address:

Published: August 2024

Predators often search for prey while moving through the environment, but there are important exceptions, including the way sedentary predators sometimes rely on signals for drawing prey to within striking distance. Some spiders, for instance, leave the remnants of previously-captured prey in their webs where they function as static lures that effectively attract a diverse array of additional prey. However, important questions remain concerning how specific the targeted prey may be and how dynamic, instead of static, signalling might be. With these questions as our rationale, we initiated research on Araneus ventricosus (L. Koch, 1878), an orb-weaving spider, as the predator and the firefly Abscondita terminalis males as the prey (Figure 1A-C). Using two lanterns situated on their abdomen (Figure 1D,F), A. terminalis males make female-attracting multi-pulse flash trains (Figure 1J), whereas sedentary females attract males by making single-pulse signals (Figure 1C,K) with a single lantern (Figure 1E,G). Drawing from extensive field observations, we propose that A. ventricosus practices deceptive interspecific communication by first ensnaring firefly males in its web and then predisposing the entrapped male fireflies to broadcast bioluminescent signals that deviate from female-attracting signals typically made by A. terminalis males and instead mimic the male-attracting signals typically made by females. The outcome is that the entrapped male fireflies broadcast false signals that lure more male fireflies into the web.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2024.07.011DOI Listing

Publication Analysis

Top Keywords

terminalis males
12
male fireflies
12
bioluminescent signals
8
entrapped male
8
fireflies broadcast
8
signals typically
8
signals
7
prey
6
males
5
figure
5

Similar Publications

Dorsal bed nucleus of the stria terminalis GABA neurons are necessary for chronic unpredictable stress-induced depressive behaviors in adolescent male mice.

J Psychiatr Res

January 2025

Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China. Electronic address:

Background: Previous studies have shown that neurons in the Bed Nucleus of the Stria Terminalis (BNST) respond to stress and play a key role in mental health. However, the cellular bases of BNST in adolescent depression remain elusive.

Methods: Male C57BL/6 mice were randomly assigned to the control (Ctrl) or chronic unpredictable stress (CUS) groups.

View Article and Find Full Text PDF

Basal forebrain innervation of the amygdala: an anatomical and computational exploration.

Brain Struct Funct

January 2025

Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.

Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.

View Article and Find Full Text PDF

The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.

View Article and Find Full Text PDF

Repeated social stress increases posterior medial amygdala neuronal activity in stress-susceptible adult male rats.

J Neurophysiol

January 2025

Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, IL, USA, 60064.

The medial amygdala (MeA) is activated by social stimuli and manipulations of the MeA disrupt a wide range of social behaviors. Social stress can shift social behaviors and may accomplish this partly via effects on the MeA. However, very little is known about the effects of social stress on the electrophysiological activity of MeA neurons.

View Article and Find Full Text PDF

Background/objectives: Rodents provide a useful translational model of fear- and anxiety-related behaviors. Previously stressed animals exhibit physiological and behavioral stress responses that parallel those observed in anxious humans. Patients diagnosed with post-traumatic stress disorder (PTSD) present with a spectrum of debilitating anxiety symptoms that result from exposure to one or more traumatic events, with individuals exposed to early adverse experiences and women having increased vulnerability for diagnoses; however, the mechanisms of this increased vulnerability remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!