Altered sleep onset transition in depression: Evidence from EEG activity and EEG functional connectivity analyses.

Clin Neurophysiol

School of Biomedical Engineering, Sun Yat-sen University-Shenzhen Campus, Shenzhen 518000, China; Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, Sun Yat-sen University-Shenzhen Campus, Shenzhen 518000, China. Electronic address:

Published: October 2024

AI Article Synopsis

  • Sleep disorders are linked to depression, potentially caused by unusual brain activity during the transition into sleep.
  • A study compared EEG data from 32 depressed patients and 33 healthy controls, finding that depressed individuals had slower changes in brain activity and different functional connectivity patterns during sleep onset.
  • The results suggest that the abnormal sleep transition in depressed patients affects both their neural activity and connectivity, offering insights into how sleep disorders manifest in depression.

Article Abstract

Objective: Sleep disorders constitute a principal diagnostic criterion for depression, potentially reflecting the abnormal persistence of brain activity during the sleep onset (SO) transition. Here, we sought to explore the differences in the dynamic changes in the EEG activity and the EEG functional connectivity (FC) during the SO transition in depressed patients.

Methods: Overnight polysomnography recordings were obtained from thirty-two depressed patients and thirty-three healthy controls. The multiscale permutation entropy (MSPE) and EEG relative power were extracted to characterize EEG activity, and weighted phase lag index (WPLI) was calculated to characterize EEG FC.

Results: The intergroup differences in EEG activity of relative power and MSPE were reversed near SO, which attributed to slower rates of change among depressed patients. Regarding the characteristics of the EEG FC network, depressed patients exhibited significantly higher inter-hemispheric and interregional WPLI values in both delta and alpha bands throughout the SO transition, concomitant with different dynamic properties in the delta band FC. During the process after SO, patients exhibited increased inter-hemispheric long-range links, whereas controls showed more intra-hemispheric ones. Finally, we found significant correlations in the dynamic changes between different EEG measures.

Conclusions: Our research revealed that the abnormal changes during the SO transition in depressed patients were manifested in both homeostatic and dynamic aspects, which were reflected in EEG FC and EEG activity, respectively.

Significance: These findings may elucidate the mechanism underlying sleep disorders in depression from the perspective of neural activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinph.2024.08.002DOI Listing

Publication Analysis

Top Keywords

eeg activity
20
depressed patients
16
eeg
12
sleep onset
8
onset transition
8
activity eeg
8
eeg functional
8
functional connectivity
8
sleep disorders
8
dynamic changes
8

Similar Publications

Basal ganglia components have distinct computational roles in decision-making dynamics under conflict and uncertainty.

PLoS Biol

January 2025

Carney Institute for Brain Science, Department of Cognitive & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America.

The basal ganglia (BG) play a key role in decision-making, preventing impulsive actions in some contexts while facilitating fast adaptations in others. The specific contributions of different BG structures to this nuanced behavior remain unclear, particularly under varying situations of noisy and conflicting information that necessitate ongoing adjustments in the balance between speed and accuracy. Theoretical accounts suggest that dynamic regulation of the amount of evidence required to commit to a decision (a dynamic "decision boundary") may be necessary to meet these competing demands.

View Article and Find Full Text PDF

Attention deficit/hyperactive disorder is increasing in prevalence among children all over the world which affects the children's communication, learning, and behavior, which in turn affects the quality of life. The depolarization of neurons is modulated by neural stimulation which triggers activity-based mechanisms of neuroplasticity. An external periodic stimulus that can modify the oscillations of the brain through synchronization is called entrainment.

View Article and Find Full Text PDF

Background: While the effects of sleep deprivation on cognitive function are well-documented, its impact on high-intensity endurance performance and underlying neural mechanisms remains underexplored, especially in the context of search and rescue operations where both physical and mental performance are essential. This study examines the neurophysiological basis of sleep deprivation on high-intensity endurance using electroencephalography (EEG). In this crossover study, twenty firefighters were subjected to both sleep deprivation (SD) and normal sleep conditions, with each participant performing endurance treadmill exercise the following morning after each condition.

View Article and Find Full Text PDF

This study involved 72 volunteers divided into two groups according to the apnea-hypopnea index (AHI): AHI>15 episodes per hour (ep/h) (main group, n=39, including 28 men, median AHI 44.15, median age 47), 0≤AHI≤15ep/h (control group, n=33, including 12 men, median AHI 2, median age 28). Each participant underwent polysomnography with a recording of 19 EEG channels.

View Article and Find Full Text PDF

Which type of feedback-Positive or negative- reinforces decision recall? An EEG study.

Front Syst Neurosci

January 2025

International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy.

This study examines the impact of positive and negative feedback on recall of past decisions, focusing on behavioral performance and electrophysiological (EEG) responses. Participants completed a decision-making task involving 10 real-life scenarios, each followed by immediate positive or negative feedback. In a recall phase, participants' accuracy (ACC), errors (ERRs), and response times (RTs) were recorded alongside EEG data to analyze brain activity patterns related to recall.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!