Activating Ca-sensitive enzymes of oxidative metabolism while preventing calcium overload that leads to mitochondrial and cellular injury requires dynamic control of mitochondrial Ca uptake. This is ensured by the mitochondrial calcium uptake (MICU)1/2 proteins that gate the pore of the mitochondrial calcium uniporter (mtCU). MICU1 is relatively sparse in the heart, and recent studies claimed the mammalian heart lacks MICU1 gating of mtCU. However, genetic models have not been tested. We find that MICU1 is present in a complex with MCU in nonfailing human hearts. Furthermore, using murine genetic models and pharmacology, we show that MICU1 and MICU2 control cardiac mitochondrial Ca influx, and that MICU1 deletion alters cardiomyocyte mitochondrial calcium signaling and energy metabolism. MICU1 loss causes substantial compensatory changes in the mtCU composition and abundance, increased turnover of essential MCU regulator (EMRE) early on and, later, of MCU, that limit mitochondrial Ca uptake and allow cell survival. Thus, both the primary consequences of MICU1 loss and the ensuing robust compensation highlight MICU1's relevance in the beating heart.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363308PMC
http://dx.doi.org/10.1073/pnas.2402491121DOI Listing

Publication Analysis

Top Keywords

mitochondrial calcium
16
micu1
8
micu1 micu2
8
micu2 control
8
mitochondrial
8
control mitochondrial
8
calcium signaling
8
mammalian heart
8
mitochondrial uptake
8
genetic models
8

Similar Publications

Thymidine phosphorylase participates in platelet activation and promotes inflammation in rheumatoid arthritis.

Toxicol Appl Pharmacol

December 2024

Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China. Electronic address:

The elevated risk of cardiovascular disease (CVD) associated with inflammatory rheumatic diseases has long been recognized. Patients with established rheumatoid arthritis (RA) have a higher mortality rate compared to the general population due to abnormal platelet activation. Thymidine phosphorylase (TYMP) plays a crucial role in platelet activation and thrombosis, following bridging the link between RA and CVD.

View Article and Find Full Text PDF

Background: Acetyl phosphate (AcP) is a microbial intermediate involved in the central bacterial metabolism. In bacteria, it also functions as a donor of acetyl and phosphoryl groups in the nonenzymatic protein acetylation and signal transduction. In host, AcP was detected as an intermediate of the pyruvate dehydrogenase complex, and its appearance in the blood was considered as an indication of mitochondrial breakdown.

View Article and Find Full Text PDF

Background: Recent studies provide strong evidence for a key role of skeletal muscle pathophysiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). In a 2021 review article on the pathophysiology of ME/CFS, we postulated that hypoperfusion and ischemia can result in excessive sodium and calcium overload in skeletal muscles of ME/CFS patients to cause mitochondrial damage. Since then, experimental evidence has been provided that supports this concept.

View Article and Find Full Text PDF

Repeated hyperbaric oxygen exposure accelerates fatigue and impairs SR-calcium release in mice.

J Appl Physiol (1985)

December 2024

Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA.

Breathing hyperoxic gas is common in diving and accelerates fatigue after prolonged and repeated exposure. The mechanism(s) remain unknown but may be related to increased oxidants that interfere with skeletal muscle calcium trafficking or impair aerobic ATP production. To determine these possibilities, C57BL/6J mice were exposed to hyperbaric oxygen (HBO) for 4-h on three consecutive days or remained in room air.

View Article and Find Full Text PDF

Low back pain (LBP) caused by nucleus pulposus degeneration and calcification leads to great economic and social burden worldwide. Unexpectedly, no previous studies have demonstrated the association and the underlying mechanism between nucleus pulposus tissue degeneration and calcification formation. Secreted Phosphoprotein 1 (SPP1) exerts crucial functions in bone matrix mineralization and calcium deposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!